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Abstract
A collaborative control scenario is modeled in the

framework of hybrid systems. The considered prob-
lems include a minimum time problem with state con-
straints and under adversarial behaviour. The prob-
lem is modeled as a differential game. Traditional
methods are extended to handle the hybrid nature of
the problem. Optimal feedback strategies are derived
and the system behaviour is discussed with the aid of
Krasovkii’s u-stable bridge.
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1 Introduction
Problems of collaborative multi-vehicle control are

posing new challenges to control. In some problems,
cooperation concerns distributing similar vehicles over
an area to optimize, for example, the rate of area cover-
age for surveillance missions. In other problems, het-
erogeneous vehicles with complementary capabilities
are used more advantageously when other forms of co-
operation take place. One such example arises when
planing operations of unmanned air vehicles (UAV)
in hostile air spaces. The probability of survival of
an UAV is directly proportional to the value of the
path integral taken with respect to some risk function
(de Sousaet al., 2004); the level of risk is significantly
reduced when the UAV flies under the protection of an
UAV carrying a jamming device. This is an example of
a collaborative control problem where vehicles interact
to improve individual or group performance.
In previous work (see (de Sousa and da Silva, 2008)

and (de Sousaet al., 2009)) we discussed aspects of
our research on using dynamic optimization for solv-
ing collaborative control problems with the help of a
simple two-vehicle optimal path coordination control
problem. This problem is representative of more gen-
eral optimal coordination problems. The problem is

modeled in the framework of hybrid systems. Here we
extend that formulation and consider the case of opti-
mization under adversarial behaviour. The adversarial
behaviour models the worst case effect of disturbances.

In the case of deterministic optimal controls problems,
it was shown in (de Sousa and da Silva, 2008) that
it may be worthwhile forv1 to deviate from the opti-
mal path (of isolated operation) to join other vehicle
that will contribute to improved conditions of opera-
tion (and to a reduced overall cost to go). In the present
case, we consider that whenv1 operates with other ve-
hicles the effect of the adversarial action is reduced.

We consider the problem of finding the minimum
time for v1 to reach a given regionS and the re-
spective optimal control. For independent operation
of v1, this is a classic differential game (see, for in-
stance, (Bardiet al., 1999)). However, the problem be-
comes highly discontinuous and gains a combinatorial
flavour when collaboration between vehicles is consid-
ered. Our approach, based on Dynamic Programing
(Bellman, 1957), reduces the complexity of such prob-
lem. We also consider the problem of reaching a given
target setT := {(x, t) : x ∈ S, t ∈ [t1, t2]}. The
system is studied with the aid of Krasovkii’s u-stable
bridge (Krasovskii, 1995). The discrete component of
the system dynamics raises interesting questions: 1) if
the initial condition forv1 does not belong to the u-
stable bridge corresponding to independent operation
of v1 it may happen that it may be worthwhile forv1
to meet other vehicles before reaching the target set as
required; 2) if the initial condition forv1 belongs to the
u-stable bridge, then it may happen that we can impose
stricter timing constraints forT .

2 Problem formulation
2.1 The system
We consider two types of vehicles:simple and

jammer. A vehicle is characterized by its type and its
state. The system is composed ofN vehicles and it is



thus described by a set of the form

{v1 = (type1, (x1)), · · · , vN = (typeN , (xN ))} (1)

The jammer vehicles are subject to fuel constraints
whereas it is assumed forsimple vehicles that fuel con-
sumption is of no concern. Thesimple vehicles are
subject to adversarial actions. However, the adversar-
ial action against asimple vehicle is eliminated when
its position coincides with the position of ajammer ve-
hicle. This joint operation is a case of collaboration.
Notice that this is a simplification, since in practice no
two vehicles may be in the same position at the same
time; in practice, thesimple vehicle would be required
to be in a given neighbourhood of thejammer vehicle.
In any case, this means that the dynamics of asimple
vehicle is a discontinuous function of its position rela-
tive to thejammer vehicles. The motion model for the
simple vehiclei, when operating alone, is given by

ẋi(t) = fi(xi, ui) + gi(xi, pi) (2)

wherexi ∈ R
n is the position of vehiclei, ui ∈ Ui is

the respective control input,pi ∈ Pi is the adversarial
input andUi andPi are closed sets.
Thejammer vehicles are not affected by the adversar-

ial behaviour. The kinematic motion model forjammer
vehicles on independent operation is given by

ẋi(t) = fi(xi, ui) (3)

The motion model for joint operation of asimple vehi-
cle i with a jammer vehiclej is given by

ẋi(t) = fij(xi, uij) (4)

whereuij ∈ Uij is the control input andfij(x, u) and
Uij are defined such that

fij(xi, Uij) = fi(xi, Ui)
⋂

fj(t, xi, Uj) (5)

This means that thejammer vehicle will be capable of
replicating the motion of thesimple vehicle.

Remark 1. The model can be easily extended in order
to consider only a partial reduction of the disturbance.
It can also be extended in order to model the reduction
of the disturbance as a function of the set of jammer
vehicles travelling simultaneously with the simple ve-
hicle. This could be useful, for instance, to model a
disturbance that can only be totally eliminated by the
presence of two jammer vehicles.

The amount of available fuel ofjammer vehicle i is
modeled by the state variableci ∈ R:

ċi(t) =

{

wi(xi, ui) if c2 > 0
0 otherwise

(6)

ci(0) = θi (7)

wherewi(., .) ≤ 0.
Consider the following two value functions:V f

i (x)

and V b
i (x). V f

i (x) is a map ofx to the minimum
amount of fuel required byjammer vehiclevi to reach
x after departing from its base. The value function is
the solution of the following PDE (see (Kurzhanskii
and Varaiya, 2001) for details on dynamic optimization
techniques for reachability analysis):

sup
u

[∇V f
i (x)fi(x, u) − wi(x, u)] = 0, u ∈ Ui (8)

V f
i (xi(0)) = 0 (9)

ConsiderV b
i (t, x). This is a map ofx to the minimum

amount of fuel required byjammer vehiclevi to reach
a destination base fromx. The value function is the
solution of the following PDE:

sup
u

[−∇V b
i (x)fi(x, u) − wi(x, u)] = 0, x /∈ B (10)

V b
i (x) = 0, x ∈ B (11)

whereB is the set of positions corresponding to re-
turning bases. It can be seen that if the vehicle is
not required to return to any base thenB = R

n and
∀x ∈ R

n : V b
i (x) = 0.

LetRi = {x : θi −V b
i (x)−V f

i (x) ≥ 0} be the set of
points that can be reached byjammer vehiclevi under
the above mentioned operational constraints. Joint op-
eration betweensimple vehicles andvi may only occur
in Ri. This means that asimple vehicle will only bene-
fit from reduced adversarial action when going through
Ri.
The vehicles are allowed to meet once and move to-

gether while thejammer vehicle has enough fuel to re-
turn to a base. If thejammer vehicle is not required
to return to a base, the vehicles may travel together
until the jammer vehicle runs out of fuel. It is possi-
ble to devise scenarios where this policy is not optimal
(e.g., heterogeneous vehicles separate in order to bene-
fit from “corridors” that enhance their specific charac-
teristic and then meet at a new region where joint op-
eration is advantageous again). The advantage of this
policy is that it allows us to reduce the dimension of the
state space of the global system. It also simplifies the
problem of coordination. In what follows, we consider
a system with a singlesimple vehicle, designated byv1.
v1 is allowed to meet and separate only once with each
jammer vehicle.



2.1.1 Two vehicles scenario For N = 2 (one
simple vehiclev1 and onejammer v2), we have three
possible distinct modes:

Mode a: v1 operating alone, without having metv2.
This is the initial mode.

Mode b: v1 moving together withv2 in joint opera-
tion; this mode is optional.

Mode c: v1 operating alone, after meeting withv2;
this mode happens after and only after modeb.

In modea, only the state ofv1 is tracked. v1 must
decide whether it meets withv2 or not. If it decides to
meetv2, it will have to define the meeting point where
the system will switch from modea to modeb. From
the perspective ofv1, all that really matters in what con-
cernsv2 is: 1) the point where the meeting takes place,
which must be insideRi; and 2) the amount of the fuel
remaining in the fuel tank ofv2 at the meeting posi-
tion, given byθ2 − V f

2 (x). When the vehicles reach
the meeting position, the system switches to modeb.
In modeb, the state variable corresponding to the fuel
of v2 is tracked along with the state ofv1. Given (4)
and (5), this is enough to describe the global system’s
state.v1 may decide to abandonv2 still insideR2. On
the other hand, as soon asv1 leavesR2 v2 must head
back to its returning base. On both cases, the system
switches to modec. On modec, like on modea, only
the state ofv1 is tracked. This model of operation can
be represented by the hybrid automaton on Figure 1,
where each mode of operation corresponds to a discrete
state. We use the notation of (Branicky, 1995), where
“?” and “!” stand for controlled and autonomous tran-
sitions, respectively; the expressions between square
brackets areguards for the respective transition (a tran-
sition may only occur if the guard condition is verified);
finally, resets of the state variables are defined after the
slash symbol.

a b c

?[x ∈ R2]/c2 := V f
2 (x) ![x /∈ R2]

?

ẋ(t) = f1(x, u)ẋ(t) = f1(x, u) ẋ(t) = f12(x, u)

ċ2(t) = w2(x(t), u(t))

Figure 1. Hybrid automaton modeling the system. The continuous

state space on modeb has one additional dimension to model avail-

able fuel inv2.

2.1.2 General case In a scenario with multiple
jammer vehicles, there are3(N−1) possible modes of
operation if all possible interactions between thesimple
vehicle and the remaining vehicles are considered. For
instance, forN = 5, we could have, at a certain time,

v2 already used,v3 andv4 being used andv5 still not
used. We denote the set of all possible discrete modes
asQ. The full continuous state for each discrete mode
is xv, v ∈ Q. The hybrid state is defined by the tu-
ple (xv, v). For N = 2, we haveQ := {a, b, c},
xa = xb = x andxb = (x, c2).

2.1.3 Computational requirements Consider
that we want to store some specific data for each point
of the state space (e.g., the optimal-time to the origin).
If no parametric description exists, some type of grid
must be defined. For simplicity, let us assume a regular
grid, with the same number of nodesD along each
dimension. Assume that each node requiresK units
of memory. In the caseN = 2, it can be seen that
the required number of continuous state variables is
n + 1 for the proposed formulation, as opposed to
the2n + 1 variables that would be required if explicit
tracking ofv2’s state was to be performed at all times.
However, we must take in account that the continuous
state space must be described on each mode. Under
these assumptions, the memory requirements for
our approach would beK2Dn + D(n+1) against
KD(2n+1).
In the general case, the memory requirements for a

model with full state tracking of each vehicle would be
KD(Nn+N−1). In the proposed approach, the maxi-
mum number of continuous state variables isn+N−1.
Let us assume that allN − 1 fuel variables are tracked
on each mode. This is an over-approximation, since it
is only necessary to track the fuel of thejammer ve-
hicles being used. Then the memory requirements are
KD(n+N−1)3M leading to a decrease ratio of memory
requirements of more than(Dn

3 )(N−1)

2.2 Problem 1
Let I(xv, v) → ([0, tf ] → U1 ×Q) denote an admis-

sible control forv1 with respect to the starting hybrid
state(xv, v) andΛ(xv, v) denote the set of all admissi-
ble controls with respect to the same state. The cost of
a trajectory from(xv, v) to a predefined target region
S ∈ R

n under controlI(xv, v) is

J̃1(I(xv , v), p(.), S) = tf (12)

wherex(tf ) ∈ S.
The problem consists of finding the minimum time to

reachS from x along with the respective optimal hy-
brid control:

t∗f = inf
I(x,a)

sup
p(.)

J̃1(I(x, a), p(.), S) (13)

with I(x, a) ∈ Λ(x, a).
It must be remarked thatt = 0 corresponds to the

instant whenv1 starts moving. In certain scenarios,
thejammer vehicles must start moving beforev1 in or-
der to reach the meeting point at the optimal instant;



in these scenarios,v1 must wait after the optimal co-
ordination has been decided. In order to consider the
time of coordination decision ast = 0, V b

i , V f
i andR

would have to be defined as time dependent. We do not
explore that perspective in the current work.

2.3 Problem 2
Find the set of initial states for which there is an ad-

missible trajectory ofv1 to the target set

T := {(x, t) : x ∈ S, t ∈ [t1, t2]} (14)

3 Solution approach
Our approach is inspired by (Sethian and Vladimirsky,

2002) and (Zhang and James, 2006). The former do not
consider state constraints. The later discusses the con-
ditions under which the value function is the solution
of the Hamilton-Jacobi-Bellman equation.

3.1 Problem 1
Without loss of generality, only theN = 2 case is

considered. Define

C2 = {(x, c2) : V b
2 (x) ≤ c2 ≤ θ2 − V f

2 (x)} (15)

as the set states that can be reached byvi from its initial
state. Consider the following value function:

V (xv, v) = inf
I(xv,v)

sup
p(.)

J̃1(I(xv , v), p(.), S) (16)

with V (S, a) = V (S, c) = 0 and the state constraint
∀xb /∈ C2 : V (xb, b) = +∞. The minimum time to
reachS when starting fromx is V (x) = V (x, a).
Assume thatfi, gi andwi fulfil the standard assump-

tions for uniqueness and existence of a solution to
Problem 1 (Bardiet al., 1999). Then the value func-
tion V (xv, v) satisfies the principle of optimality for
every discrete statev ∈ Q. Moreover,V (xv, v) is the
viscosity solution of the Hamilton-Jacobi-Isaacs Partial
Differential Equation (HJI PDE):

sup
u∈Uv

inf
p∈Pv

[−∇V (xv, v) · fv(xv, u, p)] = 1 (17)

wherefv describes the continuous flow on each dis-
crete state. In the caseN = 2, fa = fc = f1 − g1 and
fb = (f12, w2). Additionally, the following conditions
must be enforced whenx ∈ R2:

V (xb, b) > V (x, c) ⇒ V (xb, b) = V (x, c) (18)

V (x, a) > V (xb, b) ⇒ V (x, a) = V (xb, b) (19)

Notice that (18) is valid only ifxb ∈ C2.

The formulation can be extended in order to deal with
time dependent systems (e.g.,gi(t, x, u)). This would
imply the definition ofV f

i (t, x), V b
i (t, x) andRi(t) in

order to model the switching behaviour. The static HJI
would have to be replaced by the time-dependent HJI
PDE

∂V

∂t
+H(t, x,∇V ) = 0 (20)

with V (t, S, v) = 0, t ∈ [0, tmax] andtmax some ac-
ceptable finite time horizon.

3.1.1 Optimal Strategies The value function (16)
allows us to implement optimal feedback strategies.
The optimal continuous controlu∗ is given by

argmaxu∈Uv

inf
p∈Pv

[−∇V (x∗v, v
∗) · fv(x

∗

v, u, p)] (21)

with ∇V as some form of quasi-gradient ofV . How-
ever, it can be seen that the computation ofu∗ requires
the knowledge of the optimal modev∗. This is done by
parts. Let us defineV u(x) as the minimum time forv1
to reachS on independent operation. IfV u(x) ≤ V (x)
then x∗v = a. If V u(x) > V (x) then the optimal
trajectory must be computed up to the point where
∃c2 : V (x, a) ≥ V ((x, c2), b). The corresponding po-
sition will mark the meeting point betweenv1 andv2.
In a practical implementation this must be done before
v1 starts moving. The remaining computation can be
done in real-time. The transition from modeb to mode
c occurs whenV ((x, c2), b) ≥ V (x, c).

3.2 Problem 2
Krasovkii’s u-stable bridge (Krasovskii, 1995) allows

us to study the solution of this kind of problems and it
may be also used to develop extremal aiming feedback
strategies. The u-stable bridgeW (t) is the set of states
at timet for which reachability to the target set is as-
sured. The extended u-stable bridge corresponding to
the hybrid system may be computed by noting that

W (t) = {x : V (t, xv, a) 6= ∞} (22)

whereV (t, x, v) is computed by (20). If the initial con-
dition for v1 does not belong to the u-stable bridge then
there are no guarantees thatv1 reaches the target set.
By comparing the extended u-stable bridge to that of
the independent operation one notices that, for some
intervals oft in the considered time horizon, the set of
admissible states is enlarged. This answers question 1
of the introduction. The answer for question 2 is illus-
trated in the next section.

4 Examples
The first example was chosen just to illustrate some

of the subtleties of the cooperation problem. Examples



2 and 3 illustrate Problems 1 and 2 respectively. All
examples assume the caseN = 2, onejammer vehicle
and onesimple vehicle.

4.1 Example 1
If the rate of fuel consumption is constant, the time-

optimal trajectories on modeb will consist of segments
traveled at maximum speed. Otherwise, the optimal
speed profile will have to be computed along with the
optimal path. The following example consider a one-
dimensional motion model. The objective is to illus-
trate the nonlinear relation between the optimal speed
and the travelling distance in a example where it is pos-
sible to find the solution in explicit form.
On modesa andc, ẋ(t) = uu (assuming the worst

case adversarial input). On modeb, ẋ(t) = uc, 0 <
umin ≤ uc <∞; for the model of fuel consumption we
havew2(x, u) = Ku3. v2 departs fromx20 = θ2

2Ku2

min

and must return to that same position. Given the fuel
model,v2 will choose the minimum speed when mov-
ing alone, in order to save fuel for joint operation.
Therefore,V f

2 (x) = V b
2 (x) = Ku2

min|x−x20|. The tar-
get set isS = {0}. The problem consists of finding the
minimum time to reachS from any givenx ∈ [0, x20].
In this scenario,v1 will always benefit from joint op-
eration. Therefore, the problem amounts to finding the
optimaluc and the points of transition between modes.
The transition from modea to b must occur right at the
starting point ofv1. The point of transition from mode
b to c, xt, is a function of the starting point ofv1. The
objective function can be defined in the following way:

min

(

xt

uu

+
x− xt

uc

)

(23)

In this case, it is obvious that the optimal solution im-
plies total fuel expenditure. Thus, we have:

θ2 = K
[

(2x20 − xt − x)u2
min + (x− xt)u

2
c

]

(24)

Let us defineα1 = uc

uu

andα2 = umin

uu

. Then, (24) and
(23) become respectively

xt = x
(α2

1 − α2
2)

(α2
1 + α2

2)
(25)

min
α1

(

x
(α3

1 − α2
2α1 + 2α2

2)

α1(α2
1 + α2

2)

)

(26)

The minimum of (26) is achieved forα1 = α∗

1 such that
(α∗

1)
3 − 1.5(α∗

1)
2 − 0.5α2

2 = 0, as long as the result-
ing uc andxt verify uc ≥ umin andxt ∈ [0, x20]. For
α2 ∈ [0, 2], the exact value ofα∗

1 may be obtained by
the explicit formula for the solution of the cubic equa-
tion (with one real root and two complex roots). For

α2 = 0, we haveα∗

1 = 1.5. This is a limit case. Physi-
cally, it means thatv2 would not spend any fuel to meet
v1 and to return home. Forα2 ≥ 2, we haveα∗

1 = α2,
i.e.,u∗c = umin. Notice that in every case the optimal
coordinated speed,u∗c , is independent of the initial po-
sition ofv1.

4.2 Example 2
The motion models are characterized as follows:

f1(x, (u, ψ)) =

{

40u cos(ψ)
40u sin(ψ)

(27)

g1(x, (p, ψp)) =

{

39p cos(ψp)
39p sin(ψp)

(28)

with |u| ≤ 1, |p| ≤ 1. Additionally, f12 = f2 = f1.
The model of fuel consumption is given by:

ċ2(t) =

{

2, u < 0.25
128|u|3, u ≥ 0.25

(29)

with c2(0) = θ2 = 12. The starting and returning point
of v2 is β = (50, 40). The circle of radius 30 centered
at β encloses the set of points reachable byv2 within
fuel constraints. The target set is the origin ofR

2. The
value functionV (x) for the minimum time problem is
illustrated on Figure 2, along with the optimal trajec-
tories for randomly chosen initial positions ofv1. The
gray area identifies the set of initial positions for which
the traveling time ofv1 is reduced if it benefits from
cooperation ofv2.

4.3 Example 3
Consider a one-dimensional scenario with−1 ≤
f1(x, u) + g1(x, p) ≤ 1, −10 ≤ f12(x, u) ≤ 10,
c2(0) = 0, w2(x, u) = −1 andx20 = 5. The u-stable
bridge forS = {0} is illustrated on Figure 3. The right
diagram of Figure 3 corresponds to modeb but it is only
a projection of the bridge corresponding to that mode
(the fuel variable is not represented). The global stable
bridge is the reunion of I and II. Region II is also the
stable bridge corresponding to independent operation
of v1.
In order to illustrate the answer to the questions posed

in the introduction, considert = −10.5. Without col-
laboration fromjammer vehicles,v1 could only reach
the origin in less than10.5 units of time (u.t.) when
starting fromx ∈ [0, 10.5[. With collaboration, the
range is enlarged tox ∈ [0, 15[. On the other hand,
when starting fromx = 15, v1 could only reach the
origin in 15 (u.t.) without collaboration; with collabo-
ration, that time can be shortened to10.5 (u.t.). It can
be seen that forx ≥ 10 the gain of collaboration is4.5
(u.t.). We remark that whenv1 is on the boundary of
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flight phase is plotted on red (thick). The circle delimitsR2, the set

of points thatv2 can reach and still return to its initial position. The
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the optimal choice.

the stable bridge, it should use the feedback strategy
derived for Problem1. In the remaining cases, it may
use any admissible control.

I

II

x

t
−5−15−10.5
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5

0

Figure 3. U-stable bridge for Example 4. The global stable bridge

is the reunion of I and II. Region II is the stable bridge corresponding

to independent operation ofv1. Region III corresponds to modeb
(notice that it is limited byx = 5 andx = 15)

5 Conclusion
The global approach allows a systematic qualitative

and quantitative determination of whether cooperation
is advantageous or not, along with the determination of
the respective optimal trajectory. The value function
for the hybrid optimal control problem can be com-
puted as the solution of a HJI PDE involving discrete
state variables. As in the conventional approach, the
optimal trajectory is easily computed from the value
function.
The considered model, assuming additive adversarial

behaviour, is suitable to model several physical scenar-
ios. Additionally, it assures the saddle point condition

in a small game (Isaacs condition). The fact that the
effects of the control and adversarial inputs are separa-
ble greatly simplifies the problem formulation. How-
ever, there are cases where a multiplicative adversarial
action would be more suitable (e.g., to model the re-
duction of drag when a vehicle is running on the tail
of another). We consider that under mild assumptions
such formulations could still fulfil the Isaacs condition.
The formulation can be improved in order to deal with

more complex dynamic models. However, the concept
of joint operation defined here (see (4) and (5)) may
prove non-trivial or too limiting on those cases, espe-
cially on heterogeneous sets of vehicles.
Due to computational requirements, the numerical

computation of the value function is still limited to sys-
tem of low dimension. Synthesis of optimal feedback
controllers without resorting to storing the whole regu-
lar grid is also a topic of future work.
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