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Abstract

An Entropy of Curves based Indicator (ECI) is used to
evaluate and compare chaotic deterministic dynamical
systems. ECI is computed according to a methodology
that similarly to Monte Carlo calculations exploits a set
of random realizations of the dynamical system, where
randomness is with respect to the choice of the ini-
tial conditions. Each sampled initial condition evolves
in time according to the deterministic state dynamics
and the generalised entropy of the curve connecting se-
quentially all the points is computed at each time step.
According to this procedure, all linear dynamical sys-
tems are characterised by a zero constant ECI, while
higher values of the ECI reveal the nonlinear behaviour
of the dynamical system. In this paper the analysis of
chaotic systems is performed, and ECIs of well known
chaotic systems are computed and compared. ECI is
also used to infer the region of the initial conditions
in the case of dynamical systems where ordered and
chaotic regions coexist.
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1 Introduction

Mendes France developed a new theory called ther-
modynamics of plane curves, [Mendes France, 1983],
[Dupain, Kamae and Mendes France, 1986], where the
equivalent of several thermodynamics quantities like
entropy, temperature and pressure were defined in as-
sociation to plane curves. The main concept arising
from the proposed theory is that the temperature of

a curve is 0 only if the curve is a straight line, and
increases as the curve becomes more “wiggly”, the
last being a quote from Wolfram [MathWorld]. More-
over, straight lines represented by zero temperature
also have zero entropy, according to Nernst’s thermo-
dynamic assumption, still in accordance with classic
thermodynamics. Thermodynamics of plane curves has
been investigated by other authors in the literature, [Ju-
marie, 1997] and has been used for geophysical appli-
cations [Denis and Crémoux, 2002] and [Denis et al.,
2005]. More recently, the authors of this paper have ex-
tended the definition of the entropy of plane curves to
higher dimensions and showed that the concept could
be used conveniently to analyse and classify dynami-
cal systems. The generalised entropy of curves could
be used in a general R™ space, while preserving the
same properties of the original entropy in the planar
case, [Balestrino, Caiti and Crisostomi, 2009]. Analy-
sis and classification of dynamical systems can be per-
formed according to the generalised Entropy of Curves
Indicator (ECI) that is computed iteratively on the basis
of geometrical properties of random state trajectories.
The idea behind the proposed approach is to embed a
straight curve (therefore characterised by zero entropy)
inside a dynamical system and check at each time step
the value of its entropy. In case of linear system its
entropy is known to be constantly zero, while in the
case that the system dynamics fold, bend or stretch
the line, the entropy increases reaching an asymptotic
value. Therefore the sample line can be thought of as a
thermometer which is immersed in the dynamical sys-
tem to evaluate its complexity.

In [Balestrino, Caiti and Crisostomi, 2009] several
classic dynamical systems were classified according to



their ECI value, and it was shown that the ECI not only
separates linear from nonlinear systems, but among
nonlinear systems it correctly distinguishes mild non-
linear, highly nonlinear, chaotic and noisy dynamical
systems. As already acknowledged in [Balestrino, Caiti
and Crisostomi, 2009], such a classification is not al-
ways possible, since the same dynamical system might
show very different behaviours depending on the initial
conditions, therefore it does not always make sense to
associate one only value of the ECI to the overall dy-
namical system.

The novelty of this paper is the use of the ECI, which
is devoted to the analysis of chaotic systems, with spe-
cial concern on dynamical systems where both order
and chaos coexist. In this case, the final objective is to
verify whether this indicator correctly identifies if the
initial conditions belong to the chaotic region or not. In
principle, it is desired that the ECI evolves differently
depending on the initial conditions, regardless of the
fact that the dynamical equations are the same.

The paper is organised as follows: next section recalls
the algorithmic procedure to compute ECI and to list
the main properties of the indicator. In section 3, a
comparison is performed between the proposed indi-
cator and other methods already available from the re-
lated literature. ECI values associated to well known
chaotic dynamical systems are provided in section 4,
where examples of dynamical systems presenting both
chaotic and ordered behaviours are shown. Finally, in
section 5 we summarise our results and report the con-
clusions.

2 ECI

Given a sct of ordered N points in R™, the gencralised
entropy H of the piecewise linear curve connecting se-
quentially the points was defined in [Balestrino, Caiti
and Crisostomi, 2009] as

1 L

H=— %/
log (N — 1)’

where L is the length of the curve and d is the diame-
ter of the smallest hypersphere including all the points.
Equation (1) was proposed to extend the definition of
the entropy of a plane curve to R™ space, while pre-
serving the typical properties of the entropy of plane
curves [Mendes France, 1983]. In particular, let I" be a
curve in R”, then the following properties regarding the
entropy of I' hold: (proofs can be found in [Balestrino,
Caiti and Crisostomi, 2009] ).

- The entropy of I is always included between 0 and
1.

- The entropy of I is 0 if and only if I is a straight
line.

- The entropy of I' is insensitive to scale changes,
rotations and translations.

Informally, the generalised entropy of a curve measures
the irregularity of a curve, thus straight lines have zero
entropy, while more tortuous and wiggly curves have
higher entropies.

The idea here is to use equation (1) to analyse deter-
ministic dynamical systems: an entropy of curves indi-
cator records at each time step the entropy (1) associ-
ated to a curve that evolves in the phase space accord-
ing to the discrete dynamics of an underlying dynami-
cal system. System equations can be described accord-
ing to the general notation

z(k+1)=f(xz(k),k) r € R”, 2)

and the indicator ECI can be computed iteratively
according to the following procedure

Algorithm 1:
1. Imitialisation: £ = 0

(a) Choose N points 1 (0) ,...,zn (0) ordered
along a straight line
(b) ECI(0)=0

2. Evolution: step k&

(a) Compute the next state for each point
1 (k+1),...,xn (k+ 1) according to (2)

(b) Consider the curve that connects sequentially
all the points and take its length L (k)

(c) Compute the smallest hypersphere that con-
tains all the points, and take its diameter d (k)

(d) The value of our indicator ECI (k) is equiv-
alent to the entropy of the curve at that time
step, computed according to (1)

() Gotonextstep(k=Fk+1).

Initial ECI at step 1.b is zero because the curve is a
straight line, and since collinearity is preserved under
affine transformations, it remains zero if the dynamical
system is linear. Deterministic inputs can be included
in equation (2) without significant changes, and have
not been considered here for the sake of simplicity. The
algorithmic procedure of computing the entropy of a
curve is represented in figure 1 where a curve evolving
according to well known Lorenz equations is shown ev-
ery 10 steps. Clearly, its entropy is increasing. The pro-
posed algorithmic procedure to compute the ECI has
three other important properties: (proofs can be found
again in [Balestrino, Caiti and Crisostomi, 2009])

- Let us consider the special case where equations
(2) are linear. Then according to Algorithm I, if
ECI(0) = 0then ECI (k) =0,Vk € N.

- Let us consider the special case where system (2)
is one-dimensional. Then, if the state transition
function is monotone and ECI (0) = 0, then
ECI (k) =0,Vk e N.

- Even if the curve remains the same, but at least
two points exchange their positions, then the asso-
ciated ECT changes.



Figure 1. Evolution of 10 points in the phase space, and transfor-
mation of the curve connecting sequentially all of them. Initially
points are collinear, and they later evolve according to Lorenz equa-
tions. The curve connecting them is a straight line at the beginning,
and it becomes more irregular in time (the sequence is from lighter
to darker colors) and the ECI increases accordingly.

In particular the last property is due to the fact that
points are interpolated sequentially, and it permits to
identify correctly the nonlinear behaviour of a system
that performs folding operations.

3 Comparison with other chaotic indicators
Several well-established methods are known to pro-
vide quantitative evaluations of chaos, including for
instance the Lyapunov Exponents (LEs), the auto-
correlation function and the power spectrum. Other
less conventional indicators have been introduced in
the recent literature, as for instance papers [Froeschlé,
Lega and Goncezi, 1997], [Voglis, Contopoulos and
Efthymiopoulos, 1999], [Skokos, 2001], [Bonasera
et al.,, 2003] and [Lukes-Gerakopoulos, Voglis and
Efthymiopoulos, 2008]. There are two main differ-
ences between the ECI introduced here and the LEs:

1. LEs give a quantitative characterization of the ex-
ponential divergence of initially nearby trajecto-
ries, thus taking into account the stretching effect
of the underlying dynamical system. For this rea-
son both linear unstable dynamical systems and
chaotic systems might share the same LEs. In
contrast, ECI strongly differentiates linear from
chaotic systems, and takes into account simulta-
neously stretching and folding aspects of the un-
derlying dynamical systems.

2. Itis not straightforward to extend the theory of LEs
to the case of discrete-state systems, while ECI can
be still computed according to Algorithm 1 with-
out changes.

The proposed method is also similar to the d pa-
rameter introduced in [Bonasera et al., 2003], where
pairs of random trajectories are generated in a Monte-
Carlo way. In the assumption that distances among tra-
jectories reach an average common asymptotic value
that has lost memory of the initial conditions [Gade
and Amriktar, 1990], it is possible to relate d., to the
asymptotic value of the ECI, here called ECI,, by

analogy:

ox (™)

ECI. = log(N—-1)

3

where the diameter diam of the bounding hypersphere
has been indicated more extensively so to avoid misun-
derstandings with d,. The main difference with ECI
is that do, only takes into account asymptotic average
distances between trajectories, while ECI also exploits
information regarding the smallest hypersphere includ-
ing all points, thus mixing local with global informa-
tion. Moreover, the two methods provide completely
different results when applied to non chaotic systems.

4 Examples

The first example is provided to compare three chaotic
dynamical systems: Lorenz equations (4), Hénon map
(5) and the Logistic equation (6). Results are shown in
figure 2. In the Lorenz equations

96'1 =—-10 (.7}1 - .7}2)
CC.Q = 28381 — X2 — 213 , (4)
3(53 = T1T2 — 8/3:1‘:3

a discretisation step of 0.01 s is used. In the Hénon map

{xl(k—i—l):xg(k‘)Jrl—ax%(k) 5)
zo (k+1) = bxy (k)

the typical values a = 1.4 and b = 0.3 are used. In the
logistic equation

z(k+1) =z (k) -r (1 -z (k)), 6)

r = 4 is chosen. Figure 2 shows that although very
close asymptotic values of the ECI are reached, thus
suggesting that all systems present comparable con-
tents of nonlinearity, yet different values are obtained,
as can be seen clearer in the bottom of figure 2. In
particular the logistic equation is characterised by
a higher ECI, while Lorenz system by the smallest.
However, one can argue that the previous classification
is not unique, as the proposed dynamical systems can
be very different if their parameters are modified. For
instance, Lorenz equations can give rise to periodic
trajectories, or, as it is well known, the logistic
equation is completely different if other values of r are
chosen within the interval [0 4].

The last case is well illustrated in the next example
where the one dimensional state of the classic logistic
equation is extended to include the fixed parameter, so
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Figure 2. Comparison among the three different chaotic systems:
Lorenz equations, Hénon map and the Logistic equation. The bot-
tom figure zooms on the “steady state” values of the ECI, to enable
a visual classification of the chaotic systems based on the correspon-
dent ECL

that the final behaviour of the system depends heavily
on the initial conditions:

= w2 (k) - 21 (k) (1 — 21 (k))

{m (k+1) 0 o

x2 (k+1) =za(

Figure 3 shows the asymptotic value of the ECI as
a function of the initial condition of the second state
(i.e. the parameter) and proves that ECI quantifies
the nonlinear content in accordance to the well known
behaviour of the nonlinear map. The bifurcation di-
agram for interesting values of the parameter r (i.e.
initial condition of the extended state x5) is shown
in the second part of figure 3 (taken from Wikipedia
http://en.wikipedia.org/wiki/Logistic_map).

Another similar example is dedicated to the analysis
of a conservative discrete dynamical system, the stan-
dard map [Contopolus and Voglis, 1999], described by
equations

1 (k+1)=x1 (k) + 22 (k+1) ( mod 1)
@ (k+1) = 22 (k) + £ sin (221 (K)) ( mod 1)
(®)
where here K = 2.5 is used. In this case, we choose
20 random initial segments inside the unit square, and
1000 random points within each segment. Figure 4
shows the initial segments, and the trajectories fol-
lowed by the end-points of the segments. To avoid
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Figure 3. ECI computed for the logistic map as a function of the
parameter is in accordance to the well known bifurcation diagram
(taken from Wikipedia http://en.wikipedia.org/wiki/Logistic_map).

confusion, not the whole trajectories are shown, but
only points corresponding to the value of the state at
each time step (in practice they are not connected with
respect to time). Trajectories followed by the end-
points of the segments lying initially inside the islands
of stability can be followed easily by inspection, even
without showing the connections, while points evolv-
ing in the chaotic region fill the region apparently ho-
mogeneously without following distinguishable orbits.
In figure 5, the correspondent values of the ECI are
shown, and as can be seen, it is possible to distinguish
four sets of possible ECI evolutions, which have been
clustered according to lighter to darker colours. It is
remarkable that the value of the ECI is affected by
how much the initial segment was immersed inside a
chaotic region. The two segments completely inside
the ordered regions, shown with pink solid line in fig-
ure 4, give rise to the two clearly lower ECI graphs in
5. The five dashed red segments (where approximately
more than half of the segment was in the ordered re-
gion) and the two dashed blue segments (where approx-
imately less than half of the segment was in the ordered
region) provide the two intermediate sets of ECI val-
ues. Finally, all the other segments, represented with
solid black lines, are completely inside chaotic regions
and provide the highest values of the ECI. Also notice
that the value of the ECI is not related to the system
equations or parameters (which are the same in all the
cases), or to the length of the initial random segments.

The main motivation of the indicator ECI is to quan-
tify the amount of nonlinearity of a dynamical system;



Figure 4. Initial random segments and the trajectories followed by their endpoints according to the standard map are shown. Initial points

starting from non-chaotic regions clearly follow ordered trajectories.

Figure 5. ECI values for each initial condition are shown. They
clearly depend on the initial choice of the segment.

the previous example showed that this aspect can be
exploited to distinguish the ordered from the chaotic
regions within the same dynamical system. Next ex-
ample also aims at validating the previous result, in the
case of the so-called resonantly kicking oscillator [Daly
and Heffernan, 1995]. Dynamical equations are

x1 (k+1) = 21 (k) cos (B) + x2 (k) sin (8) +
+psin (2K zq (k)) sin (5)

o (k+1) =z (k) cos (B) — x1 (k) sin (B) + ,

+usin (2K xy (k)) cos (B)

)
where parameters are chosen as 4 = 6.5, K = 0.1 and
B = (1++/5) m/2. The phase space is characterised
by an area around the origin characterised by ordered
trajectories and surrounding regions where chaotic mo-
tion appears as shown in figure 6. Random initial seg-
ments are chosen inside a square of side 10 around the

origin, and two of them are outside the ordered region,
shown with dark color. The evolution of their ECI, rep-
resented with the same dark color, is clearly different
from that of the other 8 segments, as it is clearly de-
scribed in figure 7.

5 Conclusions

The main contribution of this paper is the use of an en-
tropy of curves based indicator to describe and quanti-
tatively compare well-known deterministic chaotic sys-
tems. Whenever it makes sense, the ECI asymptotic
value can be associated to a dynamical system, while
special care is devoted to the case when the behaviour
of the system clearly depends on the initial conditions
or on the values of some parameters. It is shown
through the logistic equation that the second case can
be seen as a special case of the first one, by extend-
ing the state and considering static dynamics for the
parameters. Extensive simulations proved that ECI is
correctly affected by the initial conditions, and that just
by observing its evolution it is possible to infer whether
the initial conditions belong to an ordered region or a
chaotic one.

It is also opinion of the authors that here the asymp-
totic value of the ECI was used to make distinction
among different dynamical systems or different initial
conditions, but more information can be extracted from
the ECI by observing for instance its evolution in the
“transient” stage (e.g. its slope, or time required to
reach the asymptotic value). Future work will focus
on using this information together with the asymptotic
value to infer more properties of the underlying dynam-
ics.



e
S i Rl 2T o

—1Ofwe! SICTEIPNTRRRONT: ST, SN Dol »

Figure 6. Initial random segments and the trajectories followed by their endpoints according to the equations of the kicking oscillator are shown.

Figure 7. ECI values for each initial condition are shown. They are
clearly affected by the initial choice of the segment.
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