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Abstract
A class of hybrid systems models introduced by the

author (Valuev, 1996; Valuev, 2005) gives the possibil-
ity to represent production processes in complex indus-
trial systems such as opencast mines which elements
change their qualitative states subsequently or cycli-
cally. The problem of resource planning for project
scheduling as well as some problems of inventory con-
trol may be treated in the same way. The way of chang-
ing the succession of events and optimality conditions
are presented that show the principal method of finding
the optimum control. In the case of linear models opti-
mality conditions are both necessary and sufficient and
the optimum may be found with a finite method based
on decomposition techniques.
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1 Introduction. Origin of the model class
The study of production systems show many examples

of processes in which after any qualitative state change,
or an event (such as changes of equipment units work
modes, origination and termination of partial produc-
tion processes, switches of materials flows destination
and so on) the set of relationships between production
system variables alter. Events subdivide the entire pro-
cess period into stages; the succession of events, or a
processscenario, within a given period is fixed neither
in order nor in the number and depends on the process
control.
The general formulation of the new models class is

given in the paper. These models give the possibility
to apply exact optimization techniques for determina-
tion of values of some parameters that earlier might be
appointed only by experts and to embrace in the sole
problem statement a lot of plan problem variants that
traditionally may be regarded only separately. Such

kind of models may be treated either as deterministic or
stochastic that lead to broad possibilities of controlled
processes modelling in the context of planning as well
as regulation due to various disturbances, but now we
concentrate the study on deterministic models only and
present some general results pertaining to them.

2 General formulation of the problem
An event-switched process is anN -staged process in

which instants of stages ends are moments of the ad-
vent of one or more events (for an arbitraryk-th stage
the set of these events isS(k) ⊆{1,. . . ,L}whereL de-
notes the number of events types). For an arbitraryk-th
stage, i.e. for the flowing time interval [T (k), T (k+1))
vectors of qualitative stated(k) ∈ AD(AD is a finite
set) and controlu(k) ∈ Rm are constant and the re-
lationship between the final (x1(k) ∈ Rn) and initial
(x0(k) ∈ Rn) state vectors and the stage durationt(k)
has a form of difference equations

x1(k) = Y (d(k), x0(k), u(k), t(k)), (1)

whereY (d(k), x0(k), u(k), t) denotes the solution of
the Cauchy problem for the ODE system

dx(t, k)/dt = f(d(k), x(t, k), u(k)) (2)

with the initial conditionst=0, x(0, k) = x0(k). For
thes-th event type there are the sets of components of
IXs, IDs of x(t, k), d(k) (the latter forming vectors
x(s)(t, k), d(s)(k), respectively), so thatIXs′ ∩ IXs =
IDs′ ∩ IDs = ∅ for s′ 6= s andi(s) ∈ IXs exists for
which

fi(s)(d(k), x(t, k), u(k)) ≥ fmin > 0. (3)

The conditions for the stage termination are

rY
i(s)(d

(s)(k), x1(s)(k)) ≡ x1
i(s)(k)− xs0

(d(s)(k)) = 0, s ∈ S(k),
(4)



rY
i(s)(d

(s)(k), x1(s)(k)) < 0, s /∈ S(k), (5)

resulting in no events within the stage. The values of
some components of both state vectors change as a re-
sult of the above events, so that:

di(k + 1) = Dis(d(s)(k)), i ∈ IDs, s ∈ S(k),
di(k + 1) = di(k), i /∈ IDs, s ∈ S(k),

}
(6)

x0
i (k + 1) = Xis(d(s)(k), x1 (s)(k)),

i ∈ IXs, s ∈ S(k),

x0
i (k + 1) = x1

i (k), i /∈ IXs, s ∈ S(k).





(7)

Equations (6)–(7) may be denoted as

d(k + 1) = D(S(k), d(k)),
x0(k + 1) = X(S(k), d(k), x1(k)).

The number of the process stagesN is determined from
the process termination condition

T (N + 1) = T (0) + T1. (8)

Constraints on the process have two types: the con-
straints for any stage

rU
j (d(k), u(k)) ≤ 0, j ∈ J1(d(k)),

rU
j (d(k), u(k)) = 0, j ∈ J2(d(k)),

}
(9)

and the constraints for a definite event (including ter-
minal constraints)

rY
j (x1(k)) ≤ 0, j ∈ K0(d(k)),

rY
j (x1(k)) ≤ 0, j ∈ K1(d(k), S(k)).

}
(10)

It is supposed that for anyd(k) ∈ AD the setU0(d(k))
of u(k) satisfying (9) is non-empty and bounded. The
problem consists in the determination of the process
scenarioS = (S(1), . . . , S(N)) and control (i.e., the
successionv = (v(1), . . . , v(N)) of vectorsv(k) =
(u(k), t(k)) with trajectories in continuous- and
discrete-valued state variablesd = (d(1), . . . , d(N)),
x = (x0(1), x1(1), . . . , x0(N), x1(N)) corresponding
to S, v due to (1),(4)–(7) so that restrictions (8)–(10)
are satisfied and the target functional

F0(x1(N)). (11)

has the minimum value. We assume that for every
d′ ∈ AD, x′ ∈ Rn, u′ ∈ U0

∆(d′) (where the con-
stant∆ > 0) all the functionsfi(d′, x′, u′, rU

j (d′, u′),
rY
j (d′(s), x′(s)) are determined and continuously dif-

ferentiated with respect tox′, u′ and for all their first
partial derivatives the generalized Lipschitz condition
|g(y′)− g(y)| ≤ K||y′− y||β is valid (herey = x′, u′)
and the constantsK > 0, β ∈(0, 1] do not depend on a
functiong(y)).

3 Process scenario and other representations of
the problem

We assume further that the model (1)–(11) satisfies
some general properties (for the base model they are
obviously satisfied and additional form of models rela-
tionships listed below are likely not to violate them).
Condition 1. For anyd(k) ∈ AD the setU0(d(k)) of

u(k) satisfying (9) is non-empty and bounded.
Condition 2. For all the d′ ∈ AD, x′ ∈

Rn, t′ ≥ 0, u′ ∈ U0∆(d′) =
= {u′′ ∈ Rm | rU

j (d′, u′′) ≤ ∆, j ∈ J1(d′)} where
∆ > 0 is a constant, the functionsYi(d′, x′, u′, t′),
rU
j (d′, u′), rY

j (x′) are defined, continuously differ-
entiated with respect tox′, u′, t′ and all their 1st

order partial derivatives satisfy Lipschitz condition
having the form|g(y′) − g(y)| ≤ K||y′ − y|| where
y = (x, u, t), y′ = (x′, u′, t′) andK > 0.
Condition 3. For all thes = 1, . . . , L, d′ ∈ AD,

1)

rY
i(s)(x

0(1)) < 0; (12)

2) for all x′ ∈ Rn, u′ ∈ U0 ∆(d′) the function
rY
i(s)(Y (d′, x′, u′, t)) rises monotonously with respect

to t;
3) for all S′ ⊆ {1, . . . , L} for which s ∈ S′ and all
x′ ∈ Rn satisfyingrY

i(s)(x
′) = 0 the inequality is valid

rY
i(s)(X(S′, d′, x′)) = rs0 < 0; (13)

4) for all S′, s /∈ S′ and allx′ ∈ Rn

rY
i(s)(X(S′, d′, x′)) = rY

i(s)(x
′). (14)

Each possible process of the project fulfillment is char-
acterized with the controlv, or a succession of vectors
v(k)=(u1(k), . . . , um(k), t(k)), the scenario, or a suc-
cession of setsS = (S(1),. . . , S(N)), the trajectory
x = (x0(1),x1(1),. . . ,x0(N), x1(N)) and the discrete
trajectoryd = (d(1),. . . ,d(N)). According to (6) the
discrete trajectory is the function of the scenario and
according to (1) and (7) the trajectory is the function
of the scenario and the control. Subdividing the whole
set of possible processes into the sets of processes with



the definite scenario we determineV0(S) as the set of
all possiblev whereu(k) ∈ U0(d(k)) for any k that
generates the trajectory satisfying restrictions (4), (5),
(8)–(10). Conditions (3), (12)–(14) guarantee that for
all thes = 1, ..., L, k = 1, . . . , N rY

i(s)(x
0(k)) < 0, so

from rY
i(s)(Y (d(k), x0(k), u(k), t(k))) = 0, s ∈ S(k),

we conclude that the obligatory relationshipt(k) > 0
takes place.
But V0(S) is not a closed set and forv∗ =

lim v(r)

r→∞
, v(r) ∈ V0(S), we can say that for the cor-

respondingx∗ rY
i(s)(x

∗1(k)) ≤ 0, s /∈ S(k). So we
determine another modelM1 with the set of relation-
ships (1)–(3), (6)–(10) and

rY
i(s)(x

1(k)) ≤ 0, s /∈ S(k). (15)

Analogously for the modelM1 we conclude formally
that for anyk t(k) ≥ 0. The values ofu(k) for stages
with t(k)=0 do not affect the sequence ofx0(k), x1(k)
for stages witht(k) > 0. So for any control corre-
sponding to the scenario havingdim S(k) > 1 for a
certain k we can use other scenario representations.
Both properties are used in the iterative search of the
optimum scenario.
Other representation of the modelM1 is the modelM2

determined with the set of relationships (1)–(4), (6)–
(10) and

t(k) ≥ 0 (16)

for k = 1, . . . , N and (22) for k = N . ForM1 andM2

V1(S) andV2(S) are determined analogously toV0(S).
The equivalence of both representation is asserted by
the following lemma.

Lemma 1. V1(S) = V2(S).

For a given scenario the set of the modelM2 re-
lationships defines the optimization problem for a
discrete-time process with known optimality condi-
tions (Ashchepkov, 1985; Boltyanski, 1973; Propoy,
1973) and efficient numerical methods including
(Valuev, 1990; Valuev, 1987). However, we are inter-
ested in the project optimization regardless of events
succession.

4 Change of the process scenario and necessary
optimality conditions

So we consider two aims related
to the scenario change for a given
v ∈ V2(S): first, to separate two simultaneous
events setsS1 = S(k′ − 1) and S2 = S(k′) for
which t(k′) = 0 with a short stage and second, to
make simultaneous two events setsS1 = S(k′ − 1)
andS2 = S(k′) initially separated with a short stage.
To reach both aims we seek forvA ∈ V2(S) for
which vA(k) =v(k) + εδv(k) + O(ε2), k 6= k′

and uA(k′) = u′ ∈ U0(D(S(k′ − 1), d(k′ − 1))),
tA(k′) = ε for the 1st aim anduA(k′) = u(k′),
tA(k′)=0 for the second aim.
The set of the model restrictions for a given scenario

may be represented in the following general form:

Fj(v, S) ≤ 0, j ∈ I1(S),

Fj(v, S) = 0, j ∈ I2(S).
(17)

The target functional is treated asF0(v,S) as well.
Let us denote (for a feasible controlv and ε ≥ 0)
the set ofε–active restrictions for anyJ1 ⊆ I1(S) as
J1ε(v, S)={j ∈ J1 | Fj(v, S) ≥ −ε}. We define
Iε(v, S) as I1ε(v, S) ∪ I2(S) and introduce obvious
notationIY (k, S) andIU (k, S) = J1(d(k)). We de-
note forJ ⊆ I1(S) ∪ I2(S), v′ ∈ V2(S) F (v′, S, J)
as the vector ofFj(v′, S), j ∈ J, andbj(k; v′, S) =
∇v(k)Fj(v′, S), Bj(v′, S) as the vector resulting from
concatenation of all thebj(k; v′, S), k 6= k′, and
B(v′, S, J) the matrix which rows areBj(v′, S), j ∈
J . We suppose thatBj(v′, S), j ∈ J , are linearly inde-
pendent that is guaranteed with the following
Condition 4(regularity condition) .

1) for an arbitraryv ∈ V0(S) vectorsFjv(v, S), j ∈
I0(v, S), are linearly independent;
2) for an arbitrary u(k) satisfying (9) vectors
Fju(d(k), u(k)), j ∈ J10(d(k)), are linearly indepen-
dent.
If the Condition 4 is valid thenε0 exists, such that

for any 0 ≤ ε ≤ ε0 it is valid not only for 0-active
restrictions but forε-active ones as well.
Let C(v′, S, J) be a dim(J) × dim(J) subma-

trix of B(v′, S, J) with the minimum inverse matrix
norm. The Condition 4 yieldscinv > 0 for which
||(C(v′, S, J))−1|| ≤ cinv for all v′ ∈ V2(S), J ⊆
Iε(v, S), 0 ≤ ε ≤ ε0.
For both aimsvA(k′) satisfy the respective restrictions

(9). All other restrictions (17) will be satisfied provided
that ||δv|| ≤ nV if for a ε ≤ ε0/nV a controlvA satis-
fies the equations set for the givenv:

Gj(vA, S) ≡ Fj(vA, S)− Fj(v, S) = 0,
j ∈ I ′ε = Iε(v, S) \ J1ε(d(k′)).

We propose a Newton-like method of its solution with
initial v(0) wherev(0)(k) = v(k), k 6= k′, v(0)(k′) =
vA(k′) and recursive relationships

B(v(r), S, I ′ε)(v
(r+1)− v(r)) = −G(v(r), S, I ′ε) (18)

from which the vectorvC(r+1) of v(r+1) components
corresponding to columns ofC may be determined
as vC(r) − (C(v(r), S, I ′ε))

−1G(v(r), S, I ′ε), the rest
components being zeros that yields the unique solu-
tion v(r+1). Complying (C(v(r), S, I ′ε))−1 with zero



columns to the dim(J) × M matrix Q(v(r), S, I ′ε) we
represent (18) as

v(r+1) = v(r) −Q(v(r), S, I ′ε)G(v(r), S, I ′ε)

and the iteration process (18) converges superlinearly if
ε is sufficiently small and||(C(v(r), S, I ′ε))

−1|| ≤ cinv

for all r.
To determineFjv(v′, S) we can use the formula

(Propoy, 1973) forj ∈ {0} ∪ IY (kj , S)

δFj = (p1
j (S, k′), δx1(k′))+

kj∑
k=k′+1

(p0
j (S, k), Yv(d(k), x0(k), v(k))δv(k))

(19)

where k0 = N and for conjugate variables
p0

j (S, k′), p1
j (S, k′) we have:

p1
j (S, kj) = (rY

jx(x1(kj)))T ;
p0

j (S, k) = Y T
x (d(k), x0(k), v(k)) · p1

j (S, k),

p1
j (S, k − 1) = XT

x (S(k − 1), d(k − 1),
x1(k − 1)) · p0

j (S, k), k = kj , . . . , 1,

(20)

F0(v∗, S) = F0(v, S)+
ε · (q00(v, S), Yt(d(k′), x0(k′), uA(k′), 0)
+O(ε2)

(21)

where

q00(v, S) = p1
0(S, k′)− Fov(v, S)×∑

j∈IY
0 (v,S)

Qj(v(0), S, I ′0) · p1
j (S, k′).

From (21) we may come to the necessary optimality
condition formulated in the (Valuev, 2005), namely

Theorem 1. If the pair (S, v ∈ V2(S)) gives the
solution of the problem (1)–(11) and for somek′

dim(S(k′ − 1)) > 1 then for anySA, SA(k) =
= S(k), k < k′ − 1, SA(k′ − 1) ∪ SA(k′) =
S(k′ − 1) and SA(k) = S(k − 1),
k = k′ + 1, . . . , N + 1, there exists a vector
q00(v, SA) for which for anyuA(k′) ∈ U0(dA(k′))

(q00(v, SA),Yt(d(k′), x0(k′), uA(k′), 0)) ≥ 0.

5 Resource planning as a problem of a transform-
ing process optimization

The paper (Valuev, 2007) introduced the representa-
tion of the problem in question as an optimization prob-
lem for a hybrid system (Branickyet al., 1998); this

form of the model enables to perform non-local opti-
mization with the use of special optimality conditions
and iteration method of branch-and-bound type. In
this paper additional opportunities resulting from lin-
ear form of relationships are studied. It was noticed in
(Valuev, 2007) that the process may have differentsce-
narios, i.e., sequencesD = (d(1), . . . , d(N)) of quali-
tative states of the project. According to this approach
the search of the optimum solution is based on three
types of calculations: optimization within a given sce-
nario, testing the present scenario optimality and shift-
ing to a better adjacent scenario.
For a given scenario the optimum schedule is found

from dynamic linear programming problem (DLP):

T (N) → min; (22)

T (0) = 0; T (k) = T (k − 1) + t(k),
k = 1, . . . , N ;

x(0) = 0; xi(k) = xi(k − 1) + yi(k);

(23)

umin it(k) ≤ yi(k) ≤ umax it(k),

i ∈ I1(d(k)); yi(k) = 0, i /∈ I1(d(k));

∑
i∈IRj

yi(k) ≤ uRjt(k), j = 1, . . . , m;

t(k) ≥ 0;

(24)

xi(k) + yi(k) = xTi, i ∈ I2(d(k + 1)). (25)

First of all, DLP problem is a particular case of a lin-
ear programming problem, so its exact solution may be
found with a finite method. Besides, there are decom-
position methods that enhance the efficiency of opti-
mum search, e.g. (Krivonozhkoet al., 1987). All of
these method guarantee reaching the optimum (within
a given scenario). If more than one work terminates at
the end of some stage, then other scenario representa-
tions of the project schedule exist and it is necessary to
test whether the same schedule is optimal within these
adjacent scenarios.

6 Treating the problem with the use of a decompo-
sition scheme

The method proposed here originates from author’s
generalization (Valuev, 1987) of the computational
construction proposed by Boltyanski (Boltyanski,
1973) to simplify optimality conditions for discrete-
time processes.



Let v ∈ V (D), K0(v, D) = ∅. Let us determine
for any k = 1, . . . , N P (k) ⊆ IT (k,D) andNM (k)
according to the conditions:

dim(IV 10(v, k, D) ∪ IV 2(k,D) ∪ PT (k)) ≤ n + 1,
L(k) = IT (k,D) \ PT (k), NL = dim(L(1)) + . . . +
dim(L(N)), NM (k) ≤ n + 1− dim(IV 10(v, k, D)
∪IV 2(k,D) ∪ PT (k)),
NMS(k) = NM (1) + . . . + NM (k) ≥ NLS(k) =
dim(L(1)) + . . . + dim(L(N)), NMS(N) = NLS(N),
M(k) = {NMS(k − 1) + 1, . . . , NMS(k)}.

We can determine (n+1)× (n+1) matricesC(k) and
a set of linearly independent vectorsgm(k) ∈ Rn+1,
m ∈ M(k), from the following systems of linear equa-
tions:

bT
Zi(k, D) + bT

V i(k,D)C(k) = 0,
bT
V i(k, D)gl(k) = 0, l ∈ M(k),

i ∈ IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k).
(26)

It is shown (Valuev, 1987) for a more general model
than (22)–(25) that any feasible directionδv may be
defined stage-wise in such a way:

δv(k) = δ0v(k)+C(k)δz(k)+
∑

l∈M(k)

µlg
l(k), (27)

where the following condition is valid for everyδ0v(k)

bT
V i(k, D)δ0v(k) ≤ 0, i ∈ IV 10(k, D),

bT
V i(k, D)δ0v(k) = 0,

i ∈ IV 2(k, D) ∪ PT (k)),

(28)

and the below conditions on variablesµl, l ∈ M(k),
are valid. Note that for anyδz ∈ Rn+1 and anyµl, l ∈
M(k), we have forδFi = Fi(v,D) − Fi(v + δv,D),
i ∈ IV 10(v, k, D) ∪ IV 2(k, D) ∪ PT (k), the formula

bT
Zi(k, D)δz(k)+

bT
V i(k, D)δv(k) = bT

V i(k, D)δ0v(k). (29)

Using the following conjugate equations for the target
functional and restrictions fromL(k):

p0(N + 1) = (0, . . . , 0,−1);
p0(k) = (E + C(k))p0(k + 1), k = N, . . . , 1; (30)

pi(k′ + 1) = 0, k′ = k + 2, . . . , N,

pi(k + 1) = bT
Zi(k, D),

pi(k′) = (E + C(k′))pi(k′ + 1),

k′ = k, . . . , 1,

(31)

and lettingLS = L(1)... ∪ L(N) we get the following
formulas for their variations:

δFi(v) =
N∑

k=1

(pi(k + 1), δ0v(k)+
∑

l∈M(k)

µlg
l(k)), i ∈ {0} ∪ LS .

(32)

The relationships to determine all values ofµl, l ∈
M(k), k = 1, . . . , N , are

δFi(v) = 0, i ∈ LS . (33)

With the formulas (32) they are reduced to a system of
linear equations. LetGil = (pi(k + 1), gl(k)), l ∈ LS ,
l ∈ M(k), Q = G−1, then

µl = − ∑
i∈LS

Qil

N∑
k=1

(pi(k + 1), δ0v(k)),

l ∈ M(k), k = 1, ..., N.

(34)

With the substitution of (34) to (32) we have the final
expression forδF0(v)

δF0(v, D) =
N∑

k=1

(q(k + 1), δ0v(k)),

Qi(k) =

(
N∑

k′=1

∑
l∈M(k′)

Qil •
(
p0(k′ + 1), gl(k′)

)
)

q(k + 1) = p0(k + 1) +
∑

i∈LS

Qi(k)pi(k + 1).

(35)
The efficiency of the decomposition scheme depends
mainly on its dimension, i.e.,NLS(N); in practice, as
a rule,NLS(N) is much less than the dimension ofv.
If K0(v,D) 6= ∅, then the controlv′ received from

v by cancelling stages of zero duration (and hence
v(k) = 0) and joiningIT (k) to IT (k − 1) corresponds
to another scenarioD′. Forv′ ∈ V ′(D′) the optimality
criterion of the Theorem 2 may be tested. It is possible,
however, to test the optimality ofv within the original
scenario and other adjacent scenarios with the below
optimality conditions.
Other scenario representations exist for the process

with v ∈ V (D) for whichK0(v, D) = ∅ andK1(D) =
{k | dim(IT (k)) > 1} 6= ∅. We treat the scenarioD′

as adjacent toD if a set of stagesK ′ ⊆ K1(D) ex-
ists for which everyk ∈ K ′ (for D) corresponds in
D′ to the succession of stages that we numerate with
compound indices(k, 1) or k, (k, 2), . . . , (k, n(k)),
these stages terminating with sets of finished works
IT (k, 1), . . ., IT (k, n(k)) whereIT (k) = IT (k, 1) ∪
. . . ∪ IT (k, n(k)), the rest stagesk /∈ K ′ having the
sameIT (k). Obviouslyv′ ∈ V ′(D′), if v′(k) = v(k),
k = 1, . . . , N , v′(k, i) = 0, k ∈ K ′, i = 1, . . . , n(k);
we denotevTR(v, D,D′) such av′.
Let v ∈ V (D) be the solution of the problem

(22)–(25). To establish whether the adjacent scenario



D′ is not better thanD, it is necessary to compare
F0(vTR(v, D, D′), D′) = F0(v, D) with F0(v′, D′)
for near controlsv′ ∈ V (D′) with at least one
v′(k, i) 6= 0. To construct such av′ we use the fol-
lowing variant of the formula (27):

δv(k) = C(k)

(
δz(k) +

n(k)∑
r=1

v(k, r)

)
+

∑
l

∈ M(k)µlg
l.

(36)

We have forδFi(v′, D′), i ∈ LT (k), k = 1, . . . , N ,
and forδz(k + 1), k ∈ K ′, the same expression as for
the scenarioD with

δ0v(k) = (E + C(k))
n(k)∑
r=1

v(k, r). (37)

Let us determineµl, l ∈ M(k), k =1,. . . ,N , from (34)
as for the scenarioD with δ0v(k)=0 for k /∈ K ′, using
the formula (37) for k ∈ K ′. Then we have from (35)

δF0(v′) =
∑

k∈K′


q(k + 1), (E + C(k))

n(k)∑
r=1

v(k, r)


.

Theorem 2. Let the pair (D, v ∈ V (D)) for which
K1(D) 6= ∅ and let K0(v, D) = ∅ be the solution
of the problem (22)–(25). The optimum values of the
problem (22)–(25) for all adjacent scenarios satisfy
F ∗(D′) ≥ F ∗(D) = F0(v, D) if and only if for any
k ∈ K1(D), IT1(k) ⊂ IT (k), IT1(k) 6= ∅, for any
δv′ = (δy′1, . . . , δy

′
n, 1) satisfying

umin i ≤ δy′i ≤ umax i, i ∈ I1(d(k, 2));
δy′i = 0, i /∈ I1(d(k, 2));

∑
i∈IRj

δy′i ≤ uRj , j = 1, . . . , m;
(38)

whered(k, 2) = D+(d(k), IT1(k)), the inequality is
valid

δF0(v) = (q(k + 1), (E + C(k))δv′) ≥ 0. (39)

7 Principal construction of the computational
method

As it was formulated above, the numerical method
based on the above decomposition constructions con-
sists in the interchange of the solution of optimization
problems (22)–(25) within a givenD and the search
of better adjacent scenarios by testing optimality con-
ditions of the theorem 3. Most of the necessary cal-
culations are reduced to direct computation of conju-
gate trajectories with (30)–(31), solution of algebraic

linear equations (26) and (33), some linear transforma-
tions and testing optimality conditions by solution of
linear programming problems, the latter being 1) min-
imization of qT (k + 1)δ0v(k) under constraints (28)
and|δ0vi(k)| ≤1, i = 1, . . . , n; and 2) minimization of
qT (k + 1)(E + C(k))δv′ under constraints (38). The
dimension (n+1 andn variables, respectively) and the
structure of both problems are very similar, no singu-
larity being displayed.
The author’s hypothesis is that in the set ofD there

are no local minima. It means that ifF (D) is less that
F (D′) for all adjacent scenariosD′ it gives the global
minimum. No contradictions with this hypothesis was
found, some evidence is found in particular cases, but
its formal substantiation is not found as well. If it is al-
ways true it is not necessary to build a solution tree,
because in that case every minimizing succession of
scenarios lead to the globally optimum solution.
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