
SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS
BASED ON COMPARISON WITH STOCHASTIC

MODEL 1

P. V. Pakshin, ∗ S. G. Soloviev ∗∗

∗ Nizhny Novgorod State Technical University at Arzamas, 19,
Kalinina ul., Arzamas, 607227, Russia. E-mail:

pakshin@afngtu.nnov.ru
∗∗ N.I. Lobachevsky State University of Nizhny Novgorod 23,

Prospekt Gagarina, 603950, Nizhny Novgorod, Russia. E-mail:
sergey.sol@mail.ru

Abstract: The paper considers a class of linear discrete-time systems with uncertain
parameters. New approach to synthesis of robust stabilizing control is proposed. This
approach consists of two steps. First the stochastic comparison system with multiplicative
noises is constructed such that if this stochastic system is stable in the mean square then
the original system with uncertain parameters is robustly stable. Second the stabilizing
control problem for the comparison system is solved. To find the gain matrix of the
stabilizing controller in the case of state feedback the LMI based algorithm is given and
in the case of static output feedback new method and convergent iteration algorithm are
obtained.
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1. INTRODUCTION

The study of the systems with uncertain parameters is
one from the main directions of the modern control
theory called robust stability and control theory. In
this theory there exist several approaches to describe
the uncertainty models (Boyd et al., 1994; Polyak and
Shcherbakov, 2002). For the class of linear systems
the affine and polytopic models have wide spreading.
On the one hand these models allow effectively use
the semidefinite programming technique in particular
the linear matrix inequalities (LMI) technique (Boyd
et al., 1994; Polyak and Shcherbakov, 2002; Balandin
and Kogan, 2007). On the other hand if the uncertainty
vector is p - dimensional then this approach requires to
solve 2p m - dimensional linear matrix inequalities. It
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is clear that because such high dimension these models
cannot be attractive especially in control engineering
practice.

Intensive flow of researches based on semidefinite
programming ideas has been reduced attention to
other possible approaches (Bernstein, 1987; Barmish
and Lagoa, 1997; Kan, 2000; Polyak and Shcherbakov,
2005). Bernstein (1987) proposed an interesting idea
based on construction of stochastic Ito diffusion pro-
cess, such that robust stability of a system with un-
certain parameters follows from its stochastic stabil-
ity. In this case the dimension of the problem is not
dependent on the number of uncertain parameters.
Unfortunately this idea was forgotten because it leads
to nonstandard matrix quadratic equation for which
the methods of solution were obtained only much
years later (AitRami and ElGhaoui, 1996; AitRami
and Zhou, 2000).



These methods based on LMI optimization approach
applicable if full state vector is available for controller
but the complexity of the problem does not decrease if
only observable output vector available for controller.
The researches of the last years (Syrmos et al., 1997;
Garcia et al., 2003; Polyak and Shcherbakov, 2005)
show that this problem is not convex and its solution in
principle can be not obtained by a simple way. Several
attempts of some convex approximations usually lead
to algorithms which do not guarantee convergence
(Pakshin, 1997; Pakshin and Retinsky, 2005; Polyak
and Shcherbakov, 2005). These facts attract atten-
tion to development of convergent iteration algorithms
(Yu, 2004).

In this paper the new approach to synthesis of robust
stabilizing control for linear discrete-time systems
with uncertain parameters is proposed. This approach
consists of two steps. First we construct the stochastic
comparison system with the following property: if this
system is stable in the mean square then considered
system with uncertain parameters is robustly stable.
Second the stabilizing control problem for the com-
parison system is solved. To find the gain matrix of
the stabilizing controller in the case of state feedback
an LMI based algorithm is given and in the case of
static output feedback the new method and convergent
iteration algorithm are obtained. All the proofs of the-
orems below are omitted because limited space.

2. STATEMENT OF THE PROBLEM

Consider the linear discrete-time uncertain system de-
scribed by the following equations:

xn+1 = Axn + Bun +
p∑

i=0

σi(n)(Aixn + Biun), yn = Cxn, (1)

where xn is m - dimensional state vector; un is k
- dimensional control vector; yn is r - dimensional
output vector; A, Ai (i = 1, . . . , p) are m × m
matrices; B, Bi (i = 1, . . . , p) is m × k matrices;
C is r×m matrix; σi(n) are variables which describe
the uncertainties of a parameters, it is known only that
these variables are bounded:

|σi(n)| ≤ δi i = 1, . . . , p. (2)

Consider the following problems:

• find the state feedback control

un = −Kxn, (3)

providing exponential stability of closed loop
system (1) under parameters uncertainties satis-
fying inequalities (2) (robust state feedback sta-
bilization);

• find the output feedback control

un = −Fyn, (4)

providing exponential stability of closed loop
system (1) under parameters uncertainties sat-
isfying inequalities (2) (robust output feedback
stabilization). Here K and F are k×m and k×r
gain matrices.

3. STOCHASTIC COMPARISON MODEL

Together with (1) consider the stochastic discrete-time
system

xn+1 = Acαxn +
p∑

i=1

γiAcixnvi(n), yn = Cxn,(5)

where Acα = (1 + α)1/2Ac, Ac = (A − BG), α >
0, Aci = Ai − BiG; vi(n) are components of p - di-
mensional Gaussian white noise v(n) with identity co-
variance matrix, γi are positive scalars, i = 1, . . . , p.
Take the standard assumption that the noise v(n) does
not depend on the initial state of the system (5).

The following statements establish connection be-
tween stability of the system (5) and robust stabiliza-
tion of the system (1). Denote Sm the space of real
valued symmetric matrices.

Theorem 1. Let for some α > 0, γ > 0 there
exists positive definite solution P ∈ Sm of the matrix
equation

AT
cαPAcα − P +

p∑

i=1

γ2
i AT

ciPAci + γI = 0, (6)

satisfying condition

(α−
p∑

i=1

δ2
i

Γi
)AT

c PAc + γI > 0,

0 < Γi ≤ γ2
i − δi(

p∑

j 6=i

δj + δi) i = 1, . . . , p. (7)

Then the control law

un = −Gxn, (8)

provides robust stabilization of the system (1).

Corollary 1. (Stochastic comparison model). Consider
the stochastic system

xn+1 = Aαxn + Bαun +
p∑

i=1

γi(Aixn + Biun)vi(n), yn = Cxn, (9)

where Aα = (1 + α)1/2A, Bα = (1 + α)1/2B. Let



α−
p∑

i=1

δ2
i

Γi
> 0,

0 < Γi ≤ γ2
i − δi(

p∑

j 6=i

δj + δi) i = 1, . . . , p. (10)

Then the control law (8) providing exponential stabil-
ity in the mean square (ESMS) of the system (9) is the
robust stabilizing control for the system (1).

So, the equations (9) plays the role of the compari-
son model in the robust stabilization problem of the
system (1). This means that if we assign the noise
intensity according to (10) and solve mean square
stabilization problem with G = K or with G = FC,
then we obtain the robust stabilizing control for (1)
with the state feedback or with the output feedback
correspondingly.

4. ROBUST STABILIZATION VIA STATE
FEEDBACK

It is known (Pakshin, 1994) that the state feedback
control (3) provides exponential stability in the mean
square of the system (9) if and only if there exists a
matrix P ∈ Sm , satisfying the inequalities

P > 0, (Aα −BαK)T P (Aα −BαK)− P

+
p∑

i=1

γ2
i (Ai −BiK)T P (Ai −BiK) < 0. (11)

The pair of matrices (P, K), is said to be state stabi-
lizing pair or shortly stabilizing pair if it satisfies (11).
The inequalities (11) are bilinear with respect to stabi-
lizing pair. Using Schur complement theorem (Boyd
et al., 1994) it is possible to write equivalent linear
matrix inequalities with respect to variables X = P−1

and Y = KP−1:

X > 0,

[
X Z

ZT D(X)

]
> 0, (12)

where Z = [(AαX − BαY )T γ1(A1X − B1Y )T . . .
γp(ApX −BpY )T ] D(X) = diag[X]p+1

1 . So we can
formulate the following theorem.

Theorem 2. The state feedback control (3) provides
ESMS of the system (9) if and only if the system of
LMIs (12) is feasible. The stabilizing pair is given by

P = X−1 K = Y X−1. (13)

If the relations (10) hold, then this theorem gives suf-
ficient conditions of robust stabilization of the system
(1) via state feedback (3). The gain matrix of the ro-
bust stabilizing control is given by (13). Feasibility of
the LMIs (12) can be checked and the stabilizing pair

can be founded using YALMIP parser and SeDuMi
solver for MATLAB.

We say that the system (9) is stabilizable in the mean
square if there exists a state feedback control provid-
ing ESMS of this system. In this case it is possible to
formulate the following optimal stabilization problem.
Consider the cost functional

J =
∞∑

n=0

xT
nQxn + 2xT

nNun + uT
nRun, (14)

where Q = QT ≥ 0, R = RT > 0 and N are given
matrices. Find state feedback control in the form (3),
which stabilizes in the mean square the system (9) and
minimizes (14).

Theorem 3. Let the system (9) be stabilizable in the
mean square and let the pair (Q1/2, A) be observable.
Then the solution of the optimization problem

traceP −→ max, P ∈ Sm (15)

with LMI constrains

P > 0,

[
L11 L12

LT
12 L22

]
≥ 0, (16)

where

L11 = AT
αPAα − P +

p∑

i=1

γ2
i AT

i PAi + Q,

L12 = AT
αPBα +

p∑

i=1

γ2
i AT

i PBi + N,

L22 = BT
α PBα +

p∑

i=1

γ2
i BT

i PBi + R,

is equal to positive definite solution P ∈ Sm of the
matrix quadratic equation

AT
αPAα − P +

p∑

i=1

γ2
i AT

i PAi + Q−

(AT
αPBα +

p∑

i=1

γ2
i AT

i PBi + N)(BT
α PBα +

p∑

i=1

γ2
i BT

i PBi + R)−1(AT
αPBα +

p∑

i=1

γ2
i AT

i PBi + N)T = 0. (17)

The control law (3) with the gain matrix

K = [BT
α PBα +

p∑

i=1

γ2
i BT

i PBi +

R]−1[AT
αPBα +

p∑

i=1

γ2
i AT

i PBi + N ]T (18)

stabilizes in the mean square the system (9) and mini-
mizes the cost functional (14).



5. ROBUST STABILIZATION VIA OUTPUT
FEEDBACK

According to (Pakshin, 1994) the output feedback
control (4) provides ESMS of the system (9) if and
only if there exists a matrix P ∈ Sm, satisfying the
inequalities

P > 0, (Aα −BαFC)T P (Aα −BαFC)− P +
p∑

i=1

γ2
i (Ai −BiFC)T P (Ai −BiFC) < 0. (19)

The pair of matrices (P, F ), is said to be output stabi-
lizing pair if it satisfies (19). It is clear that if (P, F )
is an output stabilizing pair then (P, FC) is a state
stabilizing pair. The solution of the bilinear inequality
(19) is connected with essential difficulties. This in-
equality can be reduced to two LMIs with respect to
mutually inverse matrices but it does not simplify the
problem. These difficulties attract attention to alterna-
tive approaches.

Suppose that the control (3) stabilizes in the mean
square the system (9). If the equation

FC = K, (20)

has exact solution with respect to matrix F , then this
matrix is the gain matrix of output stabilizing control
(4) and it can be easily found from this equation. Un-
fortunately it is possible only with a special structure
of the matrix K. To find exact solution of (20) we try
impose the structural constrains for the matrix K. Fol-
lows (Yu, 2004) write singular value decomposition
for the matrix C :

C = USV T , UT U = I, V T V = I, (21)

where U and V are orthogonal matrices, S is rectangu-
lar matrix which diagonal elements represent singular
values of C, and other elements are zeroes. Define

F = KC+, (22)

where superscript + denotes Moore-Penrose inverse.
Denoting Â = V T AV , B̂ = V T B , K̂ = KV =
[K̂1 K̂2], where K̂1 = KV1, V1 ∈ Rm×r, K̂2 =
KV2, V2 ∈ Rm×(m−r) and taking into account (21)
we have

A−BFC = V

(
Â− B̂[K̂1 K̂2]

[
Ir 0
0 0

])
V T ,

(23)
similarly

Ai −BiFC = V

(
Âi − B̂i[K̂1 K̂2]

[
Ir 0
0 0

])
V T .

(24)
Using these relations we can write

KC+C = KV1V
T
1 = K(I − V2V

T
2 ) =

K −KV2V
T
2 . (25)

The relations (23), (24) do not depend on a specific
value of K̂2. At the same time if

K̂2 = KV2 = 0 (26)

then from (25) we obtain that equation (20) holds. So
if K is the gain matrix of state feedback stabilizing
control (3) satisfying (26), then (22) is the gain matrix
of output feedback stabilizing control (4).

The gain matrix K nonlinearly depends on variables
X and Y from (12) and attempt to solve the LMIs (12)
together with the constraint (26) is not effective. For
this reason we take into consideration this constraint
using another approach.

Let us consider the cost functional

J = E[
∞∑

n=0

(xT
nQxn + uT

nRun)], (27)

where E is expectation operator, Q = QT ≥ 0, R =
RT > 0 are given matrices. Suppose that there exists
a solution of the following optimal stabilization prob-
lem. Find the control in the form (3), which stabilizes
in the mean square the system (9) and minimizes the
functional (27) along solutions of the system (9) with
constrains (26). Solving these problem via Lagrange
multiplier method we obtain the following result.

Theorem 4. Let there exists a solution of the equa-
tions

(Aα −BαK)Y (Aα −BαK)T − Y +
p∑

i=1

γ2
i (Ai −BiK)Y (Ai −BiK)T + X = 0,

(Aα −BαK)T P (Aα −BαK)− P +
p∑

i=1

γ2
i (Ai −

BiK)T P (Ai −BiK) + KT RK + Q = 0, (28)

K = [R + BT
α PBα +

p∑

i=1

γ2
i BT

i PBi]−1[BT
α PAα +

p∑

i=1

γ2
i BT

i PAi][I − V2(V T
2 Y −1V2)−1V T

2 Y −1],

KV2 = 0,

satisfying conditions

Y > 0, (Aα −BαK)Y (Aα −BαK)T − Y +
p∑

i=1

γ2
i (Ai −BiK)Y (Ai −BiK)T < 0. (29)

Then the control law (4) with the gain matrix F =
KC+ stabilizes in the mean square the system (9).

To solve the equations (28) for finding of the gain
matrix K of the stabilizing control we propose the
following iterative algorithm, which provides that for
all steps the condition (29) holds.



(1) Assign the matrices Q ≥ 0, R > 0, X > 0 and
obtain the initial value of the gain matrix K from
(12), (13). This matrix provides stabilization in
the mean square of the system (9)

(2) Solve the Sylvester equations with respect to Yi

and Pi :

(Aα −BαKi)Yi(Aα −BαKi)T +
p∑

j=1

γ2
j (Aj −

BjKi)Yi(Aj −BjKi)T + X − Yi = 0,

(Aα −BαKi)T Pi(Aα −BαKi)− Pi + KT
i RKi

+Q +
p∑

j=1

γ2
j (Aj −BjKi)T Pi(Aj −BjKi) = 0.

Evaluate the gain increment

∆Ki = [BT
α PiBα +

p∑

j=1

γ2
j BT

j PiBj +

R]−1[BT
α PiAα +

p∑

i=1

γ2
i BT

i PAi][I −

V2(V T
2 Y −1

i V2)−1V T
2 Y −1

i ]−Ki

and update the gain Ki+1 = Ki +βi∆Ki, where
0 < βi < 2 and βi is chosen so that the system
(9) with updated gain is exponentially stable in
the mean square. Set i = i + 1.

(3) If ‖ KiV2 ‖< ε, then stop the procedure and let
F = KC+, else go to step 2.

The following theorem gives a method of obtaining
the parameter β, which provides both stability in the
mean square of the system (9) for all steps of the
algorithm and convergence of this algorithm. Denote

M1 = Aα −BαKi, W = Yi,M2 = −Bα∆Ki,

Nj = Aj −BjKi, Ñj = −Bi∆Ki,

a =‖ X−1/2(M2WMT
2 +

p∑

j=1

γ2
j ÑjWÑj

T
)X−1/2 ‖2

b = 2 ‖ X−1/2(M1WMT
2 +

p∑

j=1

γ2
j NjWÑj

T
)X−1/2 ‖2, j = 1, . . . , p.

Theorem 5. (Convergence of the algorithm). Let the
parameter βi is choused on each step from the con-
dition

βi < min{β+, 2},
where β+ is positive root of the quadratic equation

aβ2 + bβ − 1.

Then the considered algorithm converges and the con-
trol law (3) with the gain matrix K = Ki, i = 1, 2, . . .
provides ESMS of the system (9).

6. EXAMPLE

Consider the problem of stabilization of the angular
longitudinal aircraft motion under given flight param-
eters uncertainty. The linearized model of this motion
is given by the following equations:

ϑ̇ = ωz,

ω̇z =−aα
mzϑ− aωz

mzωz + aα
mzΘ + aδ

mzδ, (30)

Θ̇ =−aα
y ϑ + aα

y Θ,
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Fig. 1. Typical step response (ϑ)
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Fig. 2. Trajectory of norm of KiV2

where ϑ is the pitch angle, ωz is the angular velocity,
Θ = ϑ − α, α is the angle of attack, δ is the elevator
angle. The state and control vectors of the considered
system are

x(t) = [ϑ ωz Θ]T , u(t) = δ,

Usually only ϑ and ωz are available for direct mea-
surement and we have

y(t) = [ϑ ωz]T .

In the considered flight mode the aircraft has the
following parameters uncertainties:



aα
mz ∈ aα

mz0 ±∆aα
mz, ∆aα

mz = 0.3aα
mz0,

aα
y ∈ aα

y0 ±∆aα
y , ∆aα

y = 0.3aα
y0,

aωz
mz ∈ aωz

mz0 ±∆aωz
mz ∆aωz

mz = 0.3aωz
mz0,

aδ
mz ∈ aδ

mz0 ±∆aδ
mz, ∆aδ

mz = 0.3aδ
mz0.

The nominal numerical values take from (Krasovskii,
1973): aα

mz0 = 78, aα
y0 = −2.8, aωz

mz0 =
4.1, aδ

mz0 = −57. Suppose that the control law is
formed using on-board computer such that

u(t) = u(nT ) = un,

nT ≤ t < (n + 1)T, n = 0, 1, . . . ,

where T is sample period.

The problem is to stabilize the system (30) against the
given uncertainties by means of constant static output
feedback control law (3).

To find the gain matrix of the control taw (3) we use
the algorithm from previous section. In this algorithm
we obtain the initial value of the gain matrix K0 by
the formula (18), where the matrix P is solution of the
optimization problem (15) with LMI constrains (16).

To find the weight matrices Q,N, R first we obtain the
cost functional for the continuous time system using
Johnson’s algorithm (Johnson, 1988) then calculate
the parameters of equivalent discrete time model and
equivalent cost functional (14).

As a result of computing with sample period T =
0.015s. we obtain the gain matrix F = [−27.5 −1.8].
Figure 1 shows a typical step response of the closed-
loop system with the computed gain matrix; figures
2,3 show the norm KiV2 and scaling factor β in de-
pendence on the number of iterations. All LMI/LME
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Fig. 3. Trajectory of scaling factor βi

programming was done within the framework of the
YALMIP parser with the SeDuMi solver for MAT-
LAB.

REFERENCES

AitRami, M. and L. ElGhaoui (1996). LMI optimiza-
tion for nonstandard Riccati equation arising in

stochastic control. IEEE Trans. Automat. Control
41, 1666–1671.

AitRami, M. and X. Y. Zhou (2000). Linear ma-
trix inequalities, Riccati equations, and indefinite
stochastic linear quadratic controls. IEEE Trans.
Automat. Contr. 45, 1131–1143.

Balandin, D. V. and M. M. Kogan (2007). Control syn-
thesis based on linear matrix inequalities. Nauka.
Moscow.

Barmish, B. R. and C. M. Lagoa (1997). The uniform
distribution: a rigorous justification for its use
in robustness analysis. Mathtematics of Control,
Signals and Systems 10, 203–222.

Bernstein, D.S. (1987). Robust static and dynamic
output-feedback stabilization: Deterministic and
stochastic perspectives. IEEE Trans. Automat.
Contr. AC-32, 1076–1084.

Boyd, S., L. ElGhaoui, E. Feron and V. Balakrishnan
(1994). Linear matrix inequalities in control and
system theory. SIAM. Philadelphia.

Garcia, G., B. Pradin, S. Tarbouriech and F. Zeng
(2003). Robust stabilization and guaranteed cost
control for discrete-time linear systems by static
output feedback. Automatica 39, 1635–1641.

Johnson, C.D. (1988). The ‘unreachable poles’ defect
in LQR theory: analysis and remedy. Int. J. Con-
trol 47, 697–709.

Kan, Yu. S. (2000). On substantiation of the principle
of uniformity in the problem of optimization of
the probabilistic performance. Automation and
Remote Control 61, 50–64.

Krasovskii, A.A. (1973). Systems of the authomatic
flight control and their analytical design. Nauka.
Moscow.

Pakshin, P. V. (1994). Discrete systems with random
parameters and structure. Nauka. Moscow.

Pakshin, P.V. (1997). Robust stability and stabilization
of the family of jumping stochastic systems. Non-
linear analysis, theory, methods and applications
30, 2855–2866.

Pakshin, P.V. and D.M. Retinsky (2005). Robust stabi-
lization of random-structure systems via switch-
able static output feedback. Automation and Re-
mote Control 66, 1153–1161.

Polyak, B. T. and P. S. Shcherbakov (2002). Robust
stability and control. Nauka. Moscow.

Polyak, B. T. and P. S. Shcherbakov (2005). Hard
problems in linear control theory: Possible ap-
proaches to solution. Automation and Remote
Control 66, 681–718.

Syrmos, V.L., C.T. Abdallah, P. Dorato and K. Grigo-
riadis (1997). Static output feedback - A survey.
Automatica 33, 125–137.

Yu, J. (2004). A convergent algorithm for computing
stabilizing static output feedback gains. IEEE
Trans. Automat. Contr. 49, 2271–2275.


