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Abstract
Fractional oscillator problem on a finite time interval

is studied. This equation, obtained by the minimum
action principle, contains the left- and the right-sided
fractional derivatives. The Mellin transform is applied
and the general continuous solution in the form of Mei-
jer G-functions series is derived. Solutions of the frac-
tional oscillator equation derived using Mellin trans-
form are compared with that obtained via Banach fixed
point theorem. As a result analytical relations for cer-
tain iterated fractional integrals including the left- and
the right-sided operators appear. These integrals will
be applied in solving a general class of variational frac-
tional equations.
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1 Introduction
In fractional calculus the notions of integer order

derivatives and integrals were extended to the non inte-
ger order operators (see results and references enclosed
in monograph [Samko, Kilbas and Marichev, 1993]).
Fractional operators are now being applied in physics,
mechanics, engineering, bioengineering and finances
[Agrawal, Tenreiro Machado and Sabatier, 2004; Hil-
fer, 2000; Magin, 2006; Metzler and Klafter, 2004;
Sabatier, Agrawal and Tenreiro Machado, 2007; West,
Bologna and Grigolini, 2003; Herrmann, 2007]. In
mathematical modelling of many systems fractional
differential equations, both ordinary and partial ones,
were obtained. Hence, the derivation of solutions for
such equations is an important problem in fractional
calculus.
Methods for solving fractional problems include fixed
point theorems, integral transforms, compositional and

operational methods [Kilbas, Srivastava and Trujillo,
2006] (see also earlier results in [Miller and Ross,
1993; Podlubny, 1999]). However, the ordinary frac-
tional equations were solved exactly under the as-
sumption that they contain only one type of derivative,
namely the left- or the right-sided one.
Let us point out that due to mixing of the left- and
the right-sided fractional derivatives in the integration
by parts formula [Agrawal, 2006; Samko, Kilbas and
Marichev, 1993], the fractional variational principle al-
ways leads to the Euler-Lagrange equations with both
types of derivatives. This feature is characteristic for
models of fractional mechanics as well as for field the-
ory equations. Fractional mechanics was studied first
by Riewe in [Riewe, 1996; Riewe, 1997] where both
in Lagrange and Hamilton formulations the mixing of
derivatives appears. Subsequent results by Agrawal
[Agrawal, 2002; Agrawal, 2006], Klimek [Klimek,
2001; Klimek, 2002] as well as obtained in papers by
Baleanu and collaborators [Baleanu and Avkar, 2004;
Baleanu and Muslish 2005; Baleanu 2006] and recently
by Cresson [Cresson 2007], yield similar equations.
The problem of derivation the exact solutions for frac-
tional differential equations with mixed derivatives is
therefore an important and emerging area in fractional
calculus.
Let us notice that interesting results were obtained in
this field by Agrawal in [Agrawal, 2007], where he
applied composition rules of fractional calculus. The
present paper is devoted to derivation of exact contin-
uous solution for one of the simplest variational equa-
tions of fractional mechanics, namely we discuss appli-
cation of the Mellin transform to the fractional oscilla-
tor equation. As a solution Meijer G-functions series
appears.
The paper is organized as follows. In section 2 we
present all relevant formulas from fractional calculus
and integral transforms theory. Then in section 3 we



solve fractional oscillator equation on a finite time in-
terval using the Mellin transform. The solutions for the
irrational orderα are described in section 3.1 and for
the rational order in section 3.2. Sections 3.3 and 3.4
contain examples for the irrational and rational order
α. In section 4 some analytical results concerning the
integration in fractional calculus are discussed.

2 Fractional integrals and derivatives
We recall some definitions of fractional operators and

describe their properties. The fractional integrals of
real, positive orderα ∈ R+ are defined as follows [Kil-
bas, Srivastava and Trujillo, 2006; Samko, Kilbas and
Marichev, 1993]:

Iα
0+f(t) := 1

Γ(α)

∫ t

0
f(s)ds

(t−s)1−α t > 0 (1)

Iα
b−f(t) := 1

Γ(α)

∫ b

t
f(s)ds

(s−t)1−α t < b (2)

Iα
−f(t) := 1

Γ(α)

∫ ∞
t

f(s)ds
(s−t)1−α t < ∞. (3)

The first two integralsIα
0+ andIα

b− are known as the
left-sided and respectively the right-sided Riemann-
Liouville fractional integral and the last one is called
right-sided Liouville integral.
Using the above fractional integrals two types of
derivatives are constructed. The first family are the
left- and the right-sided Riemann-Liouville derivatives
which for real orderα ∈ (n−1, n) look as follows (we
have denoted the classical derivative asD := d

dt ) [Kil-
bas, Srivastava and Trujillo, 2006; Samko, Kilbas and
Marichev, 1993]:

Dα
0+f(t) := DnIn−α

0+ f(t) (4)

Dα
b−f(t) := (−D)nIn−α

b− f(t). (5)

In the limit α −→ n+ for α ∈ (n, n + 1) we recover
the classical integer order derivatives.
When we change the order of integral and differen-
tial operators in (4,5) we obtain the Caputo fractional
derivatives which for the orderα ∈ (n − 1, n) are
given by the following formulas for absolutely contin-
uous functionf ∈ ACn[0, b] [Kilbas, Srivastava and
Trujillo, 2006; Samko, Kilbas and Marichev, 1993]:

cDα
0+f(t) := In−α

0+ Dnf(t) (6)
cDα

b−f(t) := In−α
b− (−D)nf(t). (7)

We propose to apply in solution of some variational
fractional problems one of the integral transforms,
namely we shall use the Mellin transform. It looks as
follows for sufficiently good functions [Glaeske, Prud-
nikov and Sḱornik, 2006; Kilbas and Saigo, 2004]:

M[f ](s) :=

∫ ∞

0

ts−1f(t)dt. (8)

Let us recall the Mellin transforms for power functions.
These transforms look as follows when the functions
are multiplied with the Heaviside’s function (we as-
sumeRe(s) > 0, Re(γ) > 0 for the first equality):

M[H(1 − t)(1 − t)γ−1](s) = Γ(s)Γ(γ)
Γ(s+γ)

M[tγ∆H](s) = bγ+s

γ+s , (9)

where we have denoted as∆H the following difference
of Heaviside’s functions:∆H(t) = H(t) − H(t − b).
Similarly to the Laplace transform, the Mellin trans-
form also has its convolution defined by the formula:

f ∗ g(t) :=

∫ ∞

0

f(u)g

(

t

u

)

du

u
. (10)

When the Mellin transform acts on the Mellin convolu-
tion of two functions the result is the multiplication of
corresponding transforms of both functions:

M[f ∗ g](s) = M[f ](s) ·M[g](s). (11)

The Mellin transform obeys also the translation prop-
erty:

M[tγf ](s) = M[f ](s + γ) (12)

Finally, we quote Lemma describing the Mellin trans-
form for fractional integrals after monograph by Kilbas
et al. [Kilbas, Srivastava and Trujillo, 2006].
Lemma 2.1
(1) Let s ∈ C and

∫ ∞
0

| ts+α−1f(t) | dt < ∞. The
following formula holds for Re(s) < 1 − α:

M[Iα
0+f ](s) =

Γ(1 − α − s)

Γ(1 − s)
M[f ](s + α). (13)

(2) Let s ∈ C and
∫ ∞
0

| ts+α−1f(t) | dt < ∞. The
following formula holds for Re(s) > 0:

M[Iα
−f ](s) =

Γ(s)

Γ(s + α)
M[f ](s + α). (14)

3 Mellin transform applied to fractional oscillator
equation

We shall study the fractional oscillator equation on a
finite time interval[0, b] and apply the Mellin transform
method to obtain its general continuous solution.
The fractional oscillator equation is derived using the
minimum action principle. Such an equation contains



both: the left- and the right-sided derivatives. Let us
consider the following action:

S =

∫ b

0

[

1

2
(Dα

0+f)2 − λ

2
f2

]

dt.

Applying the minimum action principle and the inte-
gration by parts formula [Agrawal, 2006]:

∫ b

0

f(t) · Dα
0+g(t)dt =

∫ b

0

g(t) · cDα
b−f(t)dt (15)

we obtain the fractional oscillator equation of the form:

[cDα
b−Dα

0+ − λ]f(t) = 0 t ∈ [0, b]. (16)

Similarly to the case of ordinary differential equation,
we have previously reformulated the above problem
to its integral form on the space of continuous func-
tions [Klimek, 2007; Klimek, 2008a]. In this procedure
we have derived the explicit form of the continuous
stationary function for fractional operatorcDα

b−Dα
0+

whenα ∈ (n − 1, n):

cDα
b−Dα

0+φ0(t) = 0 ⇐⇒ (17)

φ0(t) =

n−1
∑

k=−n+1

Aktα+k∆H(t),

whereAk ∈ R are arbitrary real coefficients and∆H
is the difference of Heaviside’s functions.
As we intend to study solutions of (16) on a finite time
interval [0, b] thus we can include∆H function in the
formula for stationary function and the general solution
can be written asf0 = f∆H for t ∈ R+ since on the
interval[0, b] both functionsf andf0 coincide.
After application of the corresponding composition
rules for fractional integrals and derivatives we refor-
mulate the problem (16) to the integral equation, which
is an equivalent to (16) when we look for continuous
solutionsf0 ∈ C[0, b]:

(1 − λIα
0+Iα

b−)f0(t) = φ0(t) (18)

and the stationary functionφ0 is given by (17).
Let us notice that when we study the problem on a fi-
nite time interval[0, b] using the form of solutionf0,
then the following fractional integrals of this function
coincide:

Iα
b−f0(t) = Iα

−f0(t). (19)

Equation (18) contains now fractional integrals on a
half axis:

(1 − λIα
0+Iα

−)f0(t) = φ0(t). (20)

Applying the Mellin transform we rewrite (20) as the
following difference equation (valid on a strip on com-
plex plane described asRe(s + α) ∈ (0, 1)):

(1 − λg(s)T2α)M[f0](s) = Φ0(s). (21)

We have denoted in the above formula asg the follow-
ing function of the complex variables ∈ C:

g(s) =
Γ(1 − α − s)Γ(s + α)

Γ(1 − s)Γ(s + 2α)
(22)

and asΦ0 - the Mellin transform of the stationary func-
tion φ0 for α ∈ (n − 1, n):

Φ0(s) =

n−1
∑

k=−n+1

Ak
bs+α+k

s + α + k
. (23)

The operatorT2α is a translation operator on complex
plane:T2αh(s) = h(s + 2α).
The above difference equation is solved by the follow-
ing series [Klimek, 2008a]:

M[f0](s) =

∞
∑

m=0

λm[g(s)T2α]mΦ0(s). (24)

Absolute convergence of the above series was explic-
itly proved in [Klimek, 2008a] forRe(s + α) ∈ (0, 1).

3.1 The case of the orderα - an arbitrary irra-
tional number

Let us notice that the component[g(s)T2α]m can
be written as the Mellin transform of the Meijer G-
function, namely the following relation is valid [Kilbas
and Saigo, 2004; Kilbas, Srivastava and Trujillo, 2006]:

Gm,m
2m,2m

[

~am

~bm
| s

]

=

m−1
∏

l=0

g(s + 2lα)

~am = [α, 3α, ..., (2m − 1)α, 2α, 4α, ..., 2mα]

~bm = [α, 3α, ..., (2m − 1)α, 0, 2α, ..., 2(m − 1)α]



provided the condition for the orderα is fulfilled [Kil-
bas and Saigo, 2004; Kilbas, Srivastava and Trujillo,
2006]:

α 6= −1 − k − l

2(j − i)
, (25)

wherej, i = 1, ...,m andk, l ∈ N0. We clearly see that
for α rational this condition can not be fulfilled starting
from a certain numberm ∈ N .
Thus we shall describe now the solutionf0 in the case
when the orderα is an irrational number.
We arrive at the explicit form for the Mellin transform
of the solutionf0 expressed in terms of Mellin trans-
forms of the Meijer G-functions:

M[f0](s) = (26)

= Φ0(s)+

∞
∑

m=1

λmGm,m
2m,2m

[

~am

~bm
| s

]

Φ0(s+2mα).

We see that in the above series each factorGm,m
2m,2m is

multiplied withΦ0(s + 2mα) = M[t2mαφ0(t)].
We know from classical results on Fox and Meijer G-
functions (see for example [Kilbas and Saigo, 2004;
Kilbas, Srivastava and Trujillo, 2006]) that the inverse
Mellin transform of the first factor looks as follows:

M−1

[

Gm,m
2m,2m

[

~am

~bm
| s

]]

(t) = (27)

= Gm,m
2m,2m

[

~am

~bm
| t

]

provided the corresponding vertical contourLiγ∞ can
be placed in the stripRe(s + α) ∈ (0, 1). Parame-
ters defining the contour look as follows for our trans-
forms (compare for example formulas (1.11.16-18) and
(1.12.6) for Fox functions from [Kilbas, Srivastava and
Trujillo, 2006]):

∆ = 0 δ = 1 a∗ = 0 µ = −2mα. (28)

We conclude that for such values of parameters the re-
quired contour exists whenα > 1/2 and in this case
t ∈ R+.
Now we are ready to derive the solutionf0 as the in-
verse Mellin transform using the formula (11) for the
Mellin convolution:

f0(t) = (29)

= φ0(t) +

∞
∑

m=1

λmGm,m
2m,2m

[

~am

~bm
| t

]

∗ t2mαφ0(t).

In the above version of the general solution of (16) the
Mellin convolution appears in each term on the right-
hand side. This convolution was calculated for com-
ponentst2mα+α+k using properties of Fox and Mei-
jer G-functions [Kilbas and Saigo, 2004] providing the
following result:

Gm,m
2m,2m

[

~am

~bm
| t

]

∗ t2mαtα+k∆H(t) = (30)

= b2mα+α+kGm+1,m
2m+1,2m+1

[

~Am,k

~Bm,k
| t

b

]

.

In this formula vectors~am and~bm are replaced with the
new vectors~Am,k and ~Bm,k defined as follows:

~Am,k = [~am, (2m + 1)α + k + 1] (31)

~Bm,k = [(2m + 1)α + k,~bm]. (32)

Using the above result on covolution we can present
the new version of the solutionf0 for the fractional
variational problem (16). It appears that this general
solution is an arbitrary linear combination of Meijer G-
functions series, each corresponding to one component
of the continuous stationary function (17):

f0(t) =
n−1
∑

k=−n+1

ckfk
0 (t) (33)

fk
0 (t) = (34)

tα+k+bα+k
∞
∑

m=1

(λb2α)mGm+1,m
2m+1,2m+1

[

~Am,k

~Bm,k
| t

b

]

,

whereα > 1/2 is an arbitrary irrational number.
Let us notice that even for the rational value ofα the
approximate solutions can be studied and they are fully
described by finite sums of the Meijer G-functions pro-
vided λb2α is small. We write explicitly the approx-
imate solution including only the first term from the
series (34):

fk
0 (t) ≈ tα+k+ (35)

+λb3α+kG2,1
3,3

[

[α, 2α, 3α + k + 1]
[3α + k, α, 0]

| t

b

]

.



3.2 The case of the orderα - an arbitrary rational
number

Now let us discuss the case when the orderα is a ra-
tional number. In this case some of the poles of the
Gamma functions in the numerator of the expression
∏m−1

l=0 g(s+2lα) can coincide for certain values ofm.
These specific terms cannot be the Mellin transforms of
Meijer G-functions but lead to new special functions -
Mellin convolutions of the Meijer G-functions. In gen-
eral to avoid the ambiguity we can split this product
into two parts:

m−1
∏

l=0

g(s + 2lα) = (36)

=

m−1
∏

l=0

Γ(1 − α − s − lα)

Γ(1 − s − lα)

m−1
∏

l=0

Γ(s + α + lα)

Γ(s + 2α + lα)
.

Instead of vectors~am,~bm ∈ R2m we shall now con-
sider the following vectors from the spaceRm:

~a′
m = [α, 3α, ..., (2m − 1)α] (37)

~b′m = [0, 2α, ..., (2m − 2)α] (38)
~a′′

m = [2α, 4α, ..., 2mα] (39)
~b′′m = [α, 3α, ..., (2m − 1)α]. (40)

We clearly see that both products in (36) obey the con-
dition (25). Thus each of them is the Mellin transform
of the respective Meijer G-function:

m−1
∏

l=0

Γ(1 − α − s − lα)

Γ(1 − s − lα)
= G0,m

m,m

[

~a′
m

~b′m
| s

]

(41)

m−1
∏

l=0

Γ(s + α + lα)

Γ(s + 2α + lα)
= Gm,0

m,m

[

~a′′
m

~b′′m
| s

]

. (42)

We check now whether the inverse Mellin transform
for theseG functions can be calculated in the strip
Re(s + α) ∈ (0, 1), that means whether the vertical
contourLiγ∞ exists [Kilbas, Srivastava and Trujillo,
2006; Kilbas and Saigo, 2004]. We start calculation
with parameters of the aboveG functions:

∆′ = 0 δ′ = 1 a′∗ = 0 µ′ = −mα (43)

∆′′ = 0 δ′′ = 1 a′′∗ = 0 µ′′ = −mα (44)

and conclude that the inversion in the vertical strip
Re(s + α) ∈ (0, 1) requires the following conditions:

∆′γ + Re(µ′) < −1 ⇐⇒ α > 1 (45)

∆′′γ + Re(µ′′) < −1 ⇐⇒ α > 1. (46)

The caseα ∈ (0, 1) should be studied separately.
Using the inverse Mellin transform we obtain the gen-
eral continuous solution for the orderα rational and
α > 1 in the form of the following series:

f0(t) = φ0(t) +

∞
∑

m=1

λm× (47)

×G0,m
m,m

[

~a′
m

~b′m
| t

]

∗Gm,0
m,m

[

~a′′
m

~b′′m
| t

]

∗t2mαφ0(t).

3.3 Example: solution forα =
√

2
2

Let us write the solutions (29) and (34) for the equa-
tion of the orderα =

√
2

2 . The continuous stationary
function has in this case only one component, namely:

φ0(t) = A0t
α∆H(t).

The general solution (29) looks in this case as follows:

f0(t) = A0t
α+ (48)

+A0

∞
∑

m=1

λmGm,m
2m,2m

[

~am

~bm
| t

]

∗ t2mα+α∆H(t)

with vectors~am,~bm defined by the formulas:

~am = [12 , 3
2 , ...,m − 1

2 , 1, 2, ...,m] ·
√

2 (49)

~bm = [12 , 3
2 , ...,m − 1

2 , 0, 1, ...,m − 1] ·
√

2. (50)

Using explicit formula for the Mellin convolutions in
(48) we obtain the solution of (16) for the orderα =√

2
2 as the Meijer G-functions series:

f0(t) = A0t
α+ (51)

+A0b
α

∞
∑

m=1

(λb2α)mGm+1,m
2m+1,2m+1

[

~Am

~Bm
| t

b

]



with vectors~Am, ~Bm given as follows:

~Am = [~am, (m + 1
2 )
√

2 + 1] (52)

~Bm = [(m + 1
2 )
√

2,~bm]. (53)

Finally we write the approximate solution for the order
α =

√
2

2 :

f0(t) ≈ A0t
√

2/2+ (54)

+A0λb3
√

2/2G2,1
3,3

[

[
√

2
2 ,

√
2, 3

√
2

2 + 1]

[
√

2
2 , 3

√
2

2 , 0]
| t

b

]

.

3.4 Example: solution forα = 3
2

We add an example with the orderα = 3
2 - being

the rational number. The continuous stationary func-
tion has now three components:

φ0(t) = [A−1t
1
2 + A0t

3
2 + A1t

5
2 ]∆H(t).

The general solution (47) looks on the time interval
[0, b] as follows:

f0(t) = A−1t
1
2 + A0t

3
2 + A1t

5
2 +

∞
∑

m=1

λm× (55)

×G0,m
m,m

[

~a′
m

~b′m
| t

]

∗ Gm,0
m,m

[

~a′′
m

~b′′m
| t

]

∗

∗t3m(A−1t
1
2 + A0t

3
2 + A1t

5
2 )∆H(t)

with vectors given by the formulas:

~a′
m = 3

2 · [1, 3, ..., (2m − 1)] (56)

~b′m = 3
2 · [0, 2, ..., (2m − 2)] (57)

~a′′
m = 3

2 · [2, 4, ..., 2m] (58)

~b′′m = 3
2 · [1, 3, ..., (2m − 1)]. (59)

Let us assume now that the value ofλ is small enough
to consider an approximate solution, where only the
first term in the series is included. Such an approxi-
mation looks as follows:

f0(t) ≈ A−1t
1
2 + A0t

3
2 + A1t

5
2 + (60)

+λ(t − 1)
1
2 ∗ (1 − t)

1
2 t

3
2 ∗

∗[A−1t
7
2 + A0t

9
2 + A1t

11
2 ]∆H(t).

In the above calculations we have applied formulas
(2.1.3) and (2.9.6) from [Kilbas and Saigo, 2004].

4 Analytical results for the iterated fractional in-
tegrals

We have discussed Meijer G-functions series as solu-
tions of the variational equation for fractional oscilla-
tor of the orderα ∈ (n − 1, n) - being an arbitrary
irrational number fulfillingα > 1/2 or respectively a
rational number fulfillingα > 1. The same problem
was solved in [Klimek, 2007; Klimek, 2008b] as a spe-
cial case using Banach fixed point theorem.
The following series was obtained in this procedure for
the fractional oscillator (16) on a finite time interval
[0, b] for arbitrary real orderα ∈ (n − 1, n):

f0(t) = φ0(t) +

∞
∑

m=1

λm[Iα
0+Iα

b−]mφ0(t). (61)

As Banach theorem guarantees that the above solution
is unique inC[0, b] we can compare results (29, 34) and
(47) with (61) from [Klimek, 2007]. Thus in addition
to explicit solution of the simple variational problem
we arrive at the new class of analytical properties of
fractional integrals.
In the case whenα ∈ (n−1, n) is an irrational number,
α > 1/2 andk = −n + 1, ..., n − 1 we obtain:

[Iα
0+Iα

b−]mtα+k∆H(t) = (62)

= Gm,m
2m,2m

[

~am

~bm
| t

]

∗ t(2m+1)α+k∆H(t).

After evaluating the Melin convolution we arrive at the
interesting compact version of the above formula:

[Iα
0+Iα

b−]mtα+k∆H(t) = (63)

= b(2m+1)α+kGm+1,m
2m+1,2m+1

[

~Am,k

~Bm,k
| t

b

]

.

In the case whenα ∈ (n − 1, n) is a rational number,
α > 1 andk = −n + 1, ..., n− 1 we have the relation:

[Iα
0+Iα

b−]mtα+k∆H(t) = G0,m
m,m

[

~a′
m

~b′m
| t

]

∗ (64)



∗Gm,0
m,m

[

~a′′
m

~b′′m
| t

]

∗ t(2m+1)α+k∆H(t).

The above formulas for the iterated fractional integrals
are valid for t ∈ [0, b] and can be applied in solv-
ing other, more complicated variational fractional prob-
lems [Klimek, 2008b].

5 Final remarks
We have presented application of the Mellin transform

to the derivation of explicit solutions for the variational
fractional oscillator equation. The exact solution ap-
pears to be Meijer G-functions series provided the or-
der α is a irrational number greater than 1/2. Forα
rational and greater than 1 we obtain correct Mellin
transform but in general the terms in the series are the
Mellin convolutions of respective Meijer G-functions.
These functions require further study.
Let us however notice that the results obtained in this
simple variational problem can be applied to a wider
class of fractional equations with mixed derivatives.
We have applied the solutions in an example present-
ing both exact and approximate results. In addition
the obtained form of solution yields a class of exact
expressions for the iterated mixed fractional integrals
which should provide solutions for more general frac-
tional equations.
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