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Abstract
Recently, Deep Convolutional Neural Networks (DC-

NNs) have opened their ways into various medical im-
age processing practices such as Computer-Aided Di-
agnosis (CAD) systems. Despite significant develop-
ments in CAD systems based on deep models, design-
ing an efficient model, as well as a training strategy to
cope with the shortage of medical images have yet to
be addressed. To address current challenges, this pa-
per presents a model including a hybrid DCNN, which
takes advantage of various feature maps of different deep
models and an incremental training algorithm. Also,
a weighting Test Time Augmentation strategy is pre-
sented. Besides, the proposed work develops the Mask-
RCNN to not only detect mass and calcification in mam-
mography images, but also to classify normal images.
Moreover, this work aims to benefit from a radiology
specialist to compare with the performance of the pro-
posed method. Illustrating the region of interest to ex-
plain how the model makes decisions is the other aim of
the study to cover existing challenges among the state-
of-the-art research works. The wide range of conducted
quantitative and qualitative experiments suggest that the
proposed method can classify breast X-ray images of
the INbreast dataset to normal, mass, and calcification

classes with Accuracy 0.96, 0.98, and 0.97, respectively.
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1 Introduction
Recently, machine learning has shown high efficiency

in processing of sensory information, which allows ma-
chines to better handle complex data [Hosny et al.,
2018]. Deep Learning is a branch of machine learning
based on automatic feature extraction from data (e.g.,
image, video, voice, etc.) and processing them using a
deep structure usually based on neural networks loosely
inspired by the human brain. In the recent years, deep
learning algorithms have been widely used in different
image processing and machine learning tasks such as
classification, identification and segmentation [LeCun
et al., 2015]. Deep learning and especially Convolutional
Neural Networks (CNNs) have opened their ways into
medical image processing. A desirable result in using
a deep learning algorithm not only depends on the ar-
chitecture of the model, but the preprocessing and train-
ing algorithms also have important roles. For example,
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Kaggle Diabetic Retinopathy challenges different results
obtained by different teams using the same architecture
[Litjens et al., 2017].

The Deep Convolutional Neural Networks (DCNNs)
can be used to build Computer-Aided Diagnosis (CAD)
systems. Two types of Computer-Aided Diagnosis
(CAD) systems are computer-aided detection (CADe)
and computer-aided diagnosis (CADX) systems. In
medical image processing systems, CADe systems serve
as a second reader in assisting a radiologist to detect sus-
picious abnormalities, where subsequently patient man-
agement decisions are made by the radiologist [Esteva
et al., 2019], [Geras et al., 2019], and [Krizhevsky et al.,
2012]. Computer aided diagnosis (CADX) systems,
however, assist to characterize abnormalities localized
by a radiologist or a CADe system. A CADX system
estimates the probabilistic class of the abnormality (e.g.
benign or malignant) and the radiologist then decides
about further evaluation.

Breast cancer can be detected through early diagnosis
and screening strategies. Screening involves the system-
atic use of testing across an asymptomatic population to
detect and treat cancer or pre-cancers. Machine Learn-
ing based CAD systems can help radiologists to detect
and diagnose abnormalities such as masses, calcifica-
tion and architecture distortion in time in mammograms;
and provide an economical way to reduce the death rate
among women with breast cancer [Tang et al., 2009].
Therefore, development of CAD systems for interpre-
tation of mammograms has drawn the attention of both
machine learning scientists and radiologists. The tradi-
tional approach to increase the diagnostics performance
of mammography is double reading. Studies show that
double reading of mammography increases the cancer
detection rate (CDR) by 15% with no significant effect
on the positive predictive value [Katzen and Dodelzon,
2018], [Thurfjell et al., 1994]. However, double read-
ing is time-consuming, it is not a cost-efficient approach
and it cannot be applied in many practices [Katzen and
Dodelzon, 2018], [Posso et al., 2016]. In comparison
with double reading, CAD systems reduce the workload
of radiologists. However, they need more improvements
to fulfill the requirements of routine clinical applications
[Tang et al., 2009]. The diagnostic performance of AI
based CAD systems, particularly those based on deep
convolutional neural networks, can be increased through
incorporating new data, whereby encourages the medical
community to use them [Katzen and Dodelzon, 2018].
The aim of this research work is to propose an AI sys-
tem, including a novel transfer learning, a hybrid con-
volutional neural network architecture, and a new eval-
uation method to classify and localize tumor lesions in
breast X-ray images. The contribution of our work is as
follows.

1. Proposing an incremental training algorithm, which
instead of training a neural network monotonically,
divides the training procedure to several supere-

pochs in such a way that each superepoch includes
several epochs.

2. Proposing a test time augmentation (TTA) evalua-
tion strategy, in which a predicted label is consid-
ered as valid if there is an agreement between the
predictions made on non-distorted and distorted ver-
sion of the input images. The final decision is made
in different than conventional TTA.

3. Designing a hybrid convolutional neural network
which benefits of various feature maps of different
convolutional neural network architectures. In this
model, Mask RCNN is used in a unique way that not
only classifies images into different lesions, but can
also detect normal images.

4. We conduct comprehensive experiments on the pro-
posed approach for lesion detection and classifica-
tion in mammograms. These experiments, were
conducted on two mammography datasets, namely
CBIS-DDSM and INbreast.

5. The proposed method produces a localization on the
region of interest as a visual explanation to show
how the model makes decisions.

2 Related Work
In this section, first, we review the recent works that

use CNN-based architectures for detecting breast cancer.
Then, we discuss the weakness of the related works and
explain how the proposed model addresses some of their
weaknesses.

2.1 Breast cancer detection and classification based
on deep models

In this subsection, the related works are overviewed
and challenges of current works are investigated. Finally,
we explain how the proposed approach addresses some
of their weaknesses.

Xi [Xi et al., 2018] used AlexNet, VGG, GoogleNet
and ResNet to classify mammography images and detect
calcification and tumor in the images. They trained the
network using patches of tumors and calcifications and
then fed the whole image to the networks using trans-
fer learning and a class activation map. They used a
CBIS-DDSM dataset in the experiments. Al-Masni [Al-
masni et al., 2018] developed a YOLO-based model to
localize tumors and classify them into malignant and
benign. They used 600 images from DDSM for the
training of the network. Furthermore, they could de-
tect masses existing over the pectorals or surrounded
by the dense tissue considered as the most challenging
cases in mammograms. Qiu [Qiu et al., 2017] proposed
a network with five convolutional and two fully con-
nected layers to detect tumors in mammography images.
The network is pre-trained by ImageNet and trained
by DDSM and MIAS datasets. They achieved better
performance by substitution of SGD by parasitic met-
ric learning [Jiao et al., 2018]. Singh [Singh et al.,
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2020] proposed a CNN model based on generative ad-
versarial to segment breast cancer and create the binary
masks (i.e. shapes of tumors). After that, a CNN is
used to classify the shapes of tumors to four classes.
Li [Li et al., 2020] proposed a Siamese-Faster-RCNN
which detects masses in the bilateral mammography im-
ages. They aimed at solving the problem of separat-
ing single mass detection and bilateral comparison apart.
For training the Siamese-Faster-RCNN, they just used
the first four convolutional layers of VGG pre-trained
by the ImageNet dataset and fine-tuned the remaining
convolutional layers using the INbreast dataset. In an-
other work, Runyu [Song et al., 2020] extracted mul-
tiple features from an improvement inception module,
Gray-Level Co-occurrence Matrix (GLCM) and His-
togram of Oriented Gradients (HOT) algorithms. Then,
the features have been used to train a combined AI sys-
tem including Support Vector Machine(SVM) and Ex-
treme Gradient Boosting for classifying mammographic
masses into three classes: normal, benign and cancer
masses. The authors investigate the performance of their
model in the cases of non-transfer learning and transfer
learning from the ImageNet dataset. Transfer learning
based on a dataset similar to the dataset under study is
a novel and common approach which has been adopted
in some recent works [Agarwal et al., 2020], [Behzadi-
khormouji et al., 2020]. For example, Agarwal [Agarwal
et al., 2020] used a transfer learning approach on a Faster
RCNN network pre-trained on Hologic images to detect
masses on small datasets such as INbreast. Finally, Ting
Pang [Pang et al., 2020] conducted an extensive survey
on published research works from 2015 until 2019 on
detection and classification of breast cancer in mammog-
raphy images using deep convolutional neural networks.

2.2 Challenges
According to the related works reviewed in the previ-

ous section, shortage of interpretation and explanation
about proposed deep models and lack of collaboration
between radiology experts and computer science spe-
cialists are among the common drawbacks of the cur-
rent research works in this area. Also, they showed that
the research works have focused on classifying and de-
tecting mammography images into one or two lesions,
including masses and calcification without classifying
the normal images (i.e., the images which do not have
any abnormalities and are belonged to the normal cate-
gory). On the other hand, transferring the learned fea-
tures from a CNN architecture pre-trained with the Ima-
geNet dataset and fine-tuning it with the datasets under
study is a common approach among them. The common
transfer learning has had significant results in different
applications. However, due to learning abstract features
in the middle and upper layers of a CNN, these layers
require more time to be fine-tuned with the dataset un-
der study. This is different for lower layers which are
responsible to learn low-level features such as edges that
are common among different datasets. For example, in

the case of medical images, the lesions are not appeared
in the image with a clear and sharp edges. Therefore,
the convolutional operation cannot detect medical con-
cepts as well as those concepts appeared in the ImageNet
dataset. Then, the upper convolutional layers require
more time to learn the region of abnormalities [Behzadi-
khormouji et al., 2020]. This problem cannot be over-
come with the common transfer learning strategy where
all or part of the layers are provided with the same op-
portunity to be fine-tuned. To cope with this problem,
instead of training a neural network monotonically, we
divide the training epochs to several superepochs in such
a way that each superepoch subsumes several epochs. In
each superepoch, the network is trained in some prede-
fined number of epochs and at the end of the superepoch
the weights of the network, which yield the best valida-
tion loss (or other metrics), are saved to be transferred
to the next superepoch (it should be noted that the best
weights may not be yielded from the last epoch of the
superepoch). Furthermore, in contrast with current ef-
forts, the proposed model not only detects mass and cal-
cification lesions, but also modifies the MASK RCNN
to classify the normal images. Moreover, the proposed
model benefits from a hybrid architecture including dif-
ferent CNNs, which provide efficient proposals from im-
ages, thus increasing the performance of mammography
classification in comparison to the related works. Be-
sides, instead of using multiple CNNs independently to
classify images based on voting among them, the present
study proposes a Test Time Augmentation (TTA) ap-
proach which benefits only from one CNN architecture
to make decisions based on voting from fed images from
different distortions. More importantly, we had a radi-
ologist evaluate the images and the performance of the
proposed model. Finally, in order to explain the models,
MASK RCNN localized the detected lesions from dif-
ferent distortions, which demonstrated the performance
of the model.

3 Proposed Method
In this section, we propose a method to train a model

to interpret mammogram images.

3.1 Training Algorithm
In this section, we present the proposed algorithm for

training convolutional neural networks for mammogram
interpretation. Then, we employ the algorithm to train
the mammography neural network.

The general Idea is as follows. Instead of training
a neural network monotonically, the training algorithm
divides the training procedure to several superepochs
in such a way that each superepoch includes several
epochs. In each superepoch, the network is trained in
several predefined number of epochs and at the end of
the superepoch the weights of the network, which yield
the best validation loss (or other metrics), are saved to
be transferred to the next superepoch (it should be noted
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Algorithm 1 SuperTrain(model, dataset,
NoSuperEpochs,NoEpochs, FreezRate[], LR[])

for i = 1 to NoSuperEpochs , i += 1 do
BestWeights =
Train(model, dataset,NoEpoch, LR[i]);
model.load(BestWeights);
model.freezlayers(layers((i−1)∗freezRate));

end for
return Model

Algorithm 2 Train(model, dataset,NoEpochs, LR)

model.compile()
model.fit(dataset,NoEpoch, SGD(LR))
return BestWeights

Figure 1. An overview of the fitness values of CNN in each supere-
poch. As can be seen, the CNN reaches a significant fitness value in
the first super epoch (the green plot). As the transfers the weights of
best classifier to the next superepochs, it is frequently fine-tuned with
the dataset under study, which yields a classifier with a lower fitness
value.

that the best weights may not be yielded from the last
epoch of the superepoch).

At the beginning of the next superepoch, the best
weights are transferred (loaded) into the network and
some of the non-frozen bottom layers are frozen and the
epochs of the superepoch run. The layers in different
superepochs are frozen from the bottom up (i.e. layers
before the classifier layers). Therefore, simple patterns
are learnt in the first epochs and the corresponding layers
are frozen. On the other side, the top layers correspond-
ing to the sophisticated features receive more training
epochs and have enough time to be trained.

In the early superepochs, larger learning rates are used
to explore the weight space and in later superepochs,
smaller learning rates are used to better exploit the vicin-
ity of the best validation loss (or other metrics) found.
Figure 1 illustrates an overview of the fitness values of
CNN in each superepoch. As can be seen, the CNN
reaches a significant fitness value in the first superepoch
(the green plot). As the algorithm transfers the weights
of the best classifier to the next superepoch, it is fre-
quently fine-tuned with the dataset under study, which
yields a classifier with a lower fitness value.

Algorithms 1 and 2 show the training method. Al-
gorithm 1 is given a neural network model, the subject
dataset and training hyper parameters as initial inputs.
The hyper parameters include the number of supere-
pochs (”NoSuperEpochs”), the number of epochs per
superepoch (”NoEpochs”), the rate of layers that should
be frozen in each superepoch (”FreezRate”) and an array
of learning rates (”LR[]”). In superepoch i. ”LR[i]” is
used as the learning rate for the hyper parameter training
procedure. In each superepoch, Algorithm 2 is called to
be run as an ordinary training algorithm. The output of
Algorithm 2 is the weights that yield the best validation
loss. The incremental training approach is achieved by
loading the returned weights to the model and freezing
some layers and moving to the next superepoch.

3.2 Training the mammography model
According to the shortage of data mentioned in Sec-

tion 2.1, we utilize advantage of two mammography
datasets in our approach. First, as an intermediate trans-
fer learning procedure, the model is pre-trained with the
CBIS-DDSM dataset by a super train with superepochs
N = 8, each of which includes 100 epochs in order to
classify images as mass and calcification images. First
the convolutional filters learn some patterns of mass and
calcification such that whole network obtains a back-
ground knowledge about how mass and calcification le-
sions look like. The learning rates are 1e-3, 1e-4, 1e-4,
1e-4, 1e-4, 1e-5, 1e-5, 1e-6 in all of the eight supere-
pochs, respectively. Then, the model is trained with IN-
breast with the same hyper-parameters in which network
is provided with an additional opportunity to adjust its
internal learned distributions with more and diverse im-
ages.

3.3 Test Time Augmentation
Deep neural networks are generally unstable against

even small distortions on input images [Zheng et al.,
2016]. Therefore, data augmentation is used to bet-
ter train them. However, training with augmented data
cannot solve all the problems, and marginally classified
unseen images can be misclassified as a result of just
a small noise. On the other side, the images that are
classified with high confidence tolerate noises well with-
out misclassification. The traditional approach to ad-
dress this problem is using meta-classifiers, which em-
ploy more than one model to classify the input and then
based on decisions made by all the models, the final de-
cision is taken. The main disadvantage of this approach
is that training some models imposes major time and
resource requirements. On the other hand, Test-Time
Augmentation (TTA), as an ensemble prediction solution
for improving the model’s performance, creates multiple
augmented copies of each image in the dataset. Then, the
network, given several manipulated images of the same
image, makes output probabilities for each class. In the
next step, using the soft voting strategy (or similar strat-
egy) the probabilities of each class are summed across
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Table 1. Number of examples per class

Dataset/Classes Mass Calcification Normal

Train Val Test Train Val Test Test

CBIS DDSM 2415 445 — 1199 212 — —

INbreast 86 7 14 212 7 14 64

Figure 2. The proposed test time augmentation strategy. In the first
round we feed the original image into the model and then we feed a
distorted (e.g. flipped, rotated) version of it into the model. If the
model classified both of them as mass, we will identify it as mass and
if the model classified both of them as calcification, we will identify
the image as calcification.

all the predictions and the class with maximum value is
selected as the final predicted class. Our proposed TTA
strategy, instead of using different models to classify the
same image, inspires TTA strategy with some modifica-
tions such that not only does improve the network’s per-
formance, but also skills the network to classify normal
images, in the case the networks, such as MASK-RCNN,
cannot naturally detect normal images (i.e., images with-
out any abnormality). The proposed strategy feeds just
two versions of the same image (i.e., the original and
manipulated ones) to one model and vote among the pre-
dicted output classes. In our problem, if a mass (or calci-
fication) is classified by the model with high confidence,
a distortion in the image should not change the decision
of the model, otherwise the image is considered as the
normal image. Therefore, we propose a scheme that in-
cludes double feeding of an image into the model (Figure
2). As can be seen in Figure 2, we feed the original im-
age into the model in the first round, and then we feed
a distorted (e.g. flipped, rotated) version of it into the
model. If the model classifies both of them as mass, then
we will identify it as mass; and if the model classified
both of them as calcification, we will identify the image
as calcification. Otherwise, we will consider the image
as a normal one with no abnormality which shows the
proposed strategy provides implicitly the network with
the ability of classifying normal images. The experimen-
tal results (Section 4) show that the false positive rate
reduces significantly. Also, as mentioned, Mask RCNN
cannot naturally classify images with normal labels (i.e.
images without any masks). However, in this research,
Mask RCNN is used in a way that not only detects the

mass and calcification images, but also classifies normal
ones.

4 Results
4.1 Dataset

There are some public and private image datasets in
the area of breast cancer [Xi et al., 2018]. In this paper,
we used the CBIS-DDSM dataset to pre-train our models
and the INbreast dataset to train and test them.

DDSM is one of the biggest datasets of mammography
with 2620 cases including MLO and CC images from
each breast (10180 images in total) with all types of find-
ings [Moreira et al., 2012]. The dataset includes normal,
benign and malign lesions. The dataset was published in
1997 and has some shortcomings. For instance, the re-
gion of interest annotations for abnormalities is not pre-
cise and only provides a general position of the lesions
[Lee et al., 2017].

The CBIS-DDSM is an improved version of the
DDSM with better RIO segmentation and data accessi-
bility. The dataset includes 3061 mammography images
from 1597 cases. It contains 1698 masses in 1592 im-
ages from 891 cases from CC and MLO views [Lee et al.,
2017].

Another public dataset for mammograms is INbreast.
It contains 410 full-field digital images from 115 cases
including both CC and MLO views [Moreira et al.,
2012]. The images of INbreast have been acquired be-
tween April 2008 and July 2010, are in the DICOM for-
mat. The dataset includes normal images with masses,
calcifications, asymmetries, architectural distortions and
images with multiple findings. The annotations of the
dataset were made by a specialist and validated by an-
other work [Moreira et al., 2012].

Of 410 INbreast mammograms, 67 images are normal
without any masses or calcifications, 53 images include
masses, 54 images include both masses and calcifica-
tions, 179 images include only calcifications and 57 im-
ages have other findings. In this paper, of 286 images
which including masses or calcifications, 258 images
were selected as the train data, 14 images were selected
as the validation data, and 14 images were selected as
test data. In addition, 30 normal images were added to
the test data. It should be noted that, since MASK RCNN
can be trained and validated just with segmented data, no
normal images are used as train or validation data. It is
noticeable that according to the three-part hold-out val-
idation strategy, each dataset was randomly organized
into three folders (train, validation, and test) and con-
tained sub folders for each image category (i.e., normal,
mass, and calcification). Table 1 summarizes the statis-
tics related to each dataset used in this study. The Mass
and Calcification images were used for training, valida-
tion and test procedures, but the normal images were just
used in case of evaluating the performance of the models
in test procedure.
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4.2 Pre-processing
We used data augmentation to prepare the data which

were to be fed into the models. Data augmentation is a
technique to generate new samples from existing sam-
ples. Data augmentation may prove to be a solution
[Krizhevsky et al., 2012], [He et al., 2020], [Heaton,
2017], [Roth et al., 2016], where training samples are
not adequate and the trained model overfits.

The samples generated by data augmentation are the
existing ones, but with different views. As a result, the
model learns the patterns from different views. The op-
erations of flipping, sharing, rotation and rescaling are
applied in this research to augment the data. In or-
der to overcome hardware limitations, the images were
cropped from 2560× 3328 pixels to 1024 × 1024.

4.3 Experiment setup
The model was implemented with the Python and

Keras library [Gullı̀, 2017] on Tensorflow [Abadi et al.,
2016] as its backend with CUDA 9 /cuDNN 7 (NVidia
Corporation, Santa Clara, Calif) dependencies for graph-
ics processing unit (GPU) acceleration. The model has
been run on a computer with a Linux operating system
(Ubuntu 18.04). The computer ran on an Intel Core(TM)
i7-6850k CPU 3.60GHz processor, 32TB of hard disk
space, 7889 MB of RAM, and a CUDA-enabled NVidia
Titan 11 GB graphics processing unit (NVidia).

All statistical analyses were accomplished using statis-
tic functions and sklearn packages of Python 3.5.2 and
the Keras platform. To compare different experiments,
ROC [Obuchowski, 2003] curves were computed on the
same test dataset. Moreover, several experiments were
designed to investigate the performance of the proposed
method.

4.4 Efficiency of data augmentation
In order to evaluate the accuracy of the model, first

all of the test images are augmented by flipping left and
flipping right operations. Second, all of the applied aug-
mentation related to the train data are applied on the test
images. Finally, the augmented test image is fed to the
model. The lesion recognized by the model is compared
with the lesion which has been acquired by feeding the
model with the real image. If both images show the same
lesion, then it is considered as a correct estimation of the
model.

4.5 Efficiency of different learning strategies
In order to investigate the efficiency of the proposed

training algorithm, a variety of relevant training strate-
gies has been examined. The details of each strategy is
as follow.

1. The First Strategy: One-stage training using a
constant learning rate. In this stage, the whole
model was trained with the learning rate=1e-5 and
epoch=1000. Also, DDSM and INbreast were used

for pre-training and fine-tuning the model initialized
with random weights, respectively.

2. The Second Strategy: One-stage training using a
decreasing learning rate. In this scenario, all of
the mask RCNN’s weights were trained. The ini-
tial value of the weights and learning rate were set
randomly and to 1e-3, respectively. To optimize the
loss function efficiency, the learning rate was re-
duced using the coefficient 0.1 in each 200 epochs
until it reached the value 1e-7. These settings were
used for both pre-training and fine-tuning the model
with the DDSM and INbreast datasets, respectively.

3. The Third Strategy: Multi-stage training from
scratch. In this strategy, the weights of the network
have been initialized randomly. Then, the network
has been pre-trained using the DDSM dataset. Fi-
nally, it was trained by the proposed incremental
training algorithm using the INbreast dataset. Each
phase of training included 8 superepochs and 100
epochs. The initial value of the learning rate was
set to 1e-3. To optimize loss function efficiency,
the learning rates used for the superepoch 1 to 8
were 1e−3, 1e−4, 1e−4, 1e−4, 1e−4, 1e−5,1e−5,
and 1e−6, respectively. These values have been de-
termined as a result of massive experiments.

4. The Fourth Strategy: Multi-stage training using
a decreasing learning rate. In this strategy, the
DDSM and INbreast datasets were used respectively
for pre-training and fine-tuning a model pre-trained
with the ImageNet dataset. In each phase of the
training, the proposed incremental training algo-
rithm was applied to the model. Each phase of train-
ing included 8 superepochs and 100 epochs. The
initial value of the learning rate was set to 1e-3.
To optimize loss the function efficiency, the learn-
ing rates used for the superepoch 1 to 8 were 1e−3,
1e−4, 1e−4, 1e−4, 1e−4, 1e−5, 1e−5, and 1e−6, re-
spectively. These values have been determined as a
result of massive experiments.

Table 2 shows the experimental results of the four
strategies. The second, and third columns indicate the
minimum loss function values of the train dataset, and
the minimum loss function of the validation data of each
strategy on the test data, respectively. As can be seen,
the Min Train Loss, and Min Validation Loss, from low
to high belong to Strategies 4 to 1, respectively.

The Figures 3 and 4 illustrate the train and validation
loss function related to each strategy. Figures 3.A and
3.B demonstrate the validation and train loss function of
the ”First Strategy”, respectively. Figures 3.C and 4.D
show the validation and train loss function of the ”Sec-
ond Strategy”, respectively. According to Figure 3.A,
the classifier related to the epoch 893 in the ”First Strat-
egy” has the lowest validation loss of 0.829, while the
figure related to ”Second Strategy” shows that the low-
est validation loss belongs to the classifier trained in the
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Table 2. The minimum train loss, and minimum validation loss of
each strategy

Strategy Train Loss Validation Loss

1 0.913 0.829

2 0.239 0.470

3 0.913 0.829

4 0.281 0.157

Figure 3. The validation and training loss functions of ”First and Sec-
ond Strategies”. The Figures A and B illustrate the validation and train-
ing loss functions of the ”First Strategy”, while those of ”Second strat-
egy” have been shown in Figures C and D. The ”First Strategy” shows
that in the epoch 893, the lowest validation loss was 0.829, and the
lowest validation loss in the ”Second Strategy” belonged to the epoch
459.

Figure 4. The validation and training loss functions of ”Third and
Fourth Strategies”. The Figures E and F illustrate the validation and
training loss functions of the ”Third Strategy”, while those of ”Forth
Strategy” have been shown in Figures G and H. The ”Third Strategy”
shows that in the epoch 292, the lowest validation loss was 0.442, and
the lowest of validation loss in the ”Fourth Strategy” belonged to the
epoch 494.

epoch 459 with a loss value of 0.470. According to Fig-
ure 4, the fourth strategy trained a classifier with the low-

est validation loss function of 0.157 in epoch 494. Due to
the better performance of the fourth strategy, it was con-
sidered as the training policy for the rest of experimental
results.

Figure 5. Figures A, B, C, and D illustrate the confusion matrix of
the first, second, third and fourth strategies.

Figure 5 shows the confusion matrices of each train-
ing strategy. As can be seen, the ”Fourth Strategy” cor-
rectly classified 59 images as the normal class, whereas
the ”Third, Second and First strategies” could correctly
classify just 48, 36 and 34 images as the normal class, re-
spectively. Also, the ”Second, Third, and Fourth Strate-
gies” had the same True Positive 14 for the class Calci-
fication, which was higher than that of the ”First Strat-
egy”.

Table 3 demonstrates the Precision, Recall, F1 and Ac-
curacy factors of each strategy. These measures were
calculated according to the test data which had not been
used by model. Also, these factors were computed for
each strategy using the sklearn package of Python 3.5.2;
moreover, the precision, recall, F1 and Accuracy factors
were computed according [Zhu et al., 2010].

According to Table 3, ” Fourth, Third, Second and
First Strategies” had precision degrees of 0.92, 0.75,
0.56, and 0.53 for the normal class respectively, while
the precision degrees of the Mass class from high to
low belonged to the ”Second, Third, Fourth, and First
Strategies” with 0.92, 0.85, 0.85, and 0.64, respectively.
Also, in the ”First Strategy”, the Calcification class had a
precision degree of 0.92, while the ”Second, Third, and
Fourth Strategies” had a precision degree of 1. More-
over, the Recall related to the normal class from high
to low belonged to the ”Second, Fourth, Third, and
First Strategies”, whereas that of the Mass class from
high to low belonged to the ”Fourth, Second, Third and
First Strategies”, respectively. Also, the Recall related
to class Calcification from high to low belonged to the
”First, Fourth, Third, and Second Strategies”.
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Table 3. The Precision, Recall, F1 , and Accuracy factors of each
strategy

Strategy Class Precision Recall F1 Accuracy

1

Normal 0.53 0.87 0.66 0.61

Mass 0.64 0.23 0.34 0.63

Calcification 0.92 0.86 0.89 0.96

2

Normal 0.56 1 0.72 0.69

Mass 0.92 0.68 0.78 0.92

Calcification 1 0.37 0.54 0.75

3

Normal 0.75 0.97 0.84 0.81

Mass 0.85 0.63 0.72 0.90

Calcification 1 0.58 0.73 0.89

4

Normal 0.92 0.98 0.95 0.93

Mass 0.85 0.80 0.82 0.94

Calcification 1 0.82 0.90 0.96

4.6 Effect of the test time augmentation method
Figure 6.A illustrates the confusion matrix of the

model without the proposed TTA approach, and the re-
sults after applying the proposed approach are presented
in Figure 6.C. In addition, Figures 6.B and 6.D show
the receiver operating characteristics of the model with-
out and with using the proposed test time augmentation
strategy respectively. As can be seen, the area under the
curve of the normal images increases from 0.84 to 0.943
by applying the proposed approach and at the same time,
the area under the curve of the mass and calcification im-
ages show only a slight improvement.

Figure 6. Effect of the test time augmentation method. Figures A and
C show the confusion matrixes of the model without/with the proposed
approach. Figures B and D show the receiver operating characteristics
of the model without and with using the proposed approach, respec-
tively. As can be seen, the area under the curve of the normal images
increases from 0.84 to 0.943 by applying the proposed approach and
at the same time, the area under the curve of the mass and calcification
images show only a slight improvement.

4.7 A New hybrid MASK RCNN-CNN model
According to the previous experiments, the TTA ap-

proach improved the performance of the MASK RCNN
model. In order to improve the proposed architec-
ture, this section introduces a new hybrid architecture
which improves the performance of the model. First, a
set of six well-known pre-trained CNNs with the Ima-
geNet dataset such as MobileNet, ResNet50, ResNetV2,
VGG16, VGG19, and Xception were trained on abnor-
mality and normal patches introduced in the mass and
calcification images of the INbreast dataset. Then, two
of the best models were selected to be combined with the
TTA MASK RCNN to increase the performance of clas-
sification. According to Figure 7, Mask RCNN outputs
the predicted label and an image including the region of
interest. Then, the image is fed to a CNN model (in this
case, the Xception model) to make another decision. In
the end, the final decision will be taken by voting based
on the three results.

Figure 7. The hybrid MASK RCNN model. Mask RCNN outputs the
predicted label and an image illustrating the region of interest. Then,
the image is fed to a CNN model (in this case, the Exception model) to
make another decision. In the end, the final decision will be taken by
voting based on the three results..

Table 4 shows the Precision, Recall, F1, and Accuracy
measures of each CNN. According to the experimental
results, the highest to the lowest Accuracy of the nor-
mal class belonged to ResNet50, Xception, ResNetV2,
VGG16, VGG19, and MobileNet with the values of
0.94, 0.90, 0.80, 0.80, 0.41, and 0.38, respectively. Also,
the same trend can be seen in the experimental results
of the Mass class with the F1 measures of 0.95, 0.93,
0.82, 0.80, 0.40, and 0.35, respectively, whereas these
values for the Calcification class from the highest to
the lowest belonged to VGG16, ResNet50, MobileNet,
VGG19, ResNetV2, and Exception with the F1 scores of
1, 0.98, 0.97, 0.96, 0.92, and 0.90, respectively. Finally,
as ResNet50 and Exception had better performance with
most of the factors in comparison to other models, they
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Figure 8. The confusion matrix of the Interpretation mammography
image by a radiologist (A), and the best trained CNN model, test time
augmentation MASK RCNN + Xception, (B).

Table 4. The Precision, Recall, F1, and Accuracy factors of each
CNN

CNN Model Class Precision Recall F1 Accuracy

MobileNet

Normal 0.10 1 0.19 0.38

Mass 1 0.19 0.32 0.35

Calcification 0.85 1 0.92 0.97

VGG 16

Normal 0.71 1 0.83 0.8

Mass 1 0.77 0.60 0.80

Calcification 1 1 1 1

VGG 19

Normal 0.15 1 0.27 0.41

Mass 1 0.20 0.33 0.40

Calcification 0.85 0.92 0.88 0.96

ResNet50

Normal 0.92 1 0.95 0.94

Mass 1 0.77 0.87 0.95

Calcification 1 0.93 0.96 0.98

ResNetV2

0.75 0.96 0.84 0.80

Mass 1 0.50 0.66 0.82

Calcification 0.85 0.85 0.85 0.95

Xception

0.89 0.96 0.92 0.90

Mass 1 0.70 0.82 0.93

Calcification 0.85 0.92 0.88 0.93

Table 5. The Precision, Recall, F1, and Accuracy factors of each
hybrid structure

CNN Model Class Precision Recall F1 Accuracy

TTA MASK RCNN + Xception

Normal 0.96 0.98 0.97 0.96

Mass 0.92 1 0.96 0.98

Calcification 1 0.87 0.93 0.97

TTA MASK RCNN + ResNet50

Normal 0.90 0.98 0.94 0.92

Mass 0.93 0.93 0.96 0.97

Calcification 1 0.77 0.87 0.95

are selected as the potential models for the hybrid archi-
tecture.

Table 5 shows the experimental results of two hybrid
architectures. According to the results, the hybrid archi-
tecture including Xception model had Accuracy of 0.96,
0.98, and 0.97 for the Normal, Mass, and Calcification
classes, respectively which were greater than those of
the hybrid architecture including ResNet50.

4.8 Interpretation of the mammography images by
a radiologist

In order to compare the accuracy of the proposed
model with a radiologist, a radiologist with 12 years of
experience was requested to classify the test images to
three categories: Mass, Calcification and Normal. We
provided him with 92 images. In 14 cases, he requested
more images from different angels in order to make bet-
ter diagnoses. In 19 cases he failed to recognize the cor-
rect label (Figure 8.A), while the best proposed model
illustrated in Figure 8.B (TTA MASK RCNN + Xcep-
tion) had lower failed detections.

5 Discussion
Machine learning is a branch of Artificial Intelligence

(AI) which aims to provide computer systems with the
ability to learn patterns and analyze the relationships be-
tween the data to perform tasks that normally require hu-
man intelligence [Kohli et al., 2017]. These tasks can be
performed in two ways: supervised and unsupervised.
In unsupervised tasks, the machine learning algorithms
make decisions based on the similarity criteria among
various categories, whereas the label assigned to each
data in supervised problems is the main factor for mak-
ing decisions by a machine learning algorithm [Choy
et al., 2018]. In this study a hybrid convolutional neural
network was designed in a supervised manner to classify
mammography images as normal, calcification or mass.

5.1 The Performance of Proposed Model
One of the most significant advantages of the convolu-

tional neural network is its great ability to provide var-
ious representations of high dimensional data such as
images. MASK RCNN is an extension of the RCNN
families, which generates the regions of interest using an
alignment layer to classify and localize the objects inside
the images. Despite significant achievements in propos-
ing various pre-training strategies as well as CNN archi-
tectures, there are not enough images from various real-
world applications such as medicine. This raises chal-
lenges how we can create efficient CNN architectures
and train strategies for training such networks to learn
appropriate patterns. In this study, we proposed a model
which utilizes an incremental training strategy and a hy-
brid convolutional neural network to address such chal-
lenges.

From a training point of view, the majority of the state-
of-the-art CNN models have been pre-trained by the Im-
ageNet dataset. Since training such networks, which in-
clude millions of parameters, is extremely expensive, the
transfer learning strategy is a common approach to ad-
dress this problem. Because of the similarity between
the features in lower views such as edges and points
in different data, transferring the lower features to the
new task can help to increase the learning speed and
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more importantly address shortage of data required for
training the CNN model. However, transferring features
from a network pre-trained with a dataset which is com-
pletely different from the one under study needs to be
adjusted to the new task, especially in medical applica-
tions, where contexts of images are completely different
from the ImageNet dataset. In this stage, we can ad-
dress the mentioned issue to some extent by fine-tuning
the model, especially the upper layers using the dataset
under study [Becherer et al., 2019]. Shu [Shu, 2019]
explains that fine-tuning a new classifier with a small
dataset drastically increases the risk of overfitting and
leads to poor generalization. Also, in a fine-tuning strat-
egy, all the layers are updated at same time per fed data.
In other words, all lower, intermediate, and upper lay-
ers have the same chance to be tuned with the target
data. However, as intermediate and upper layers cre-
ate an abstract of target data, they need more time to be
tuned with the target data. As a result, we proposed a
novel transfer-learning in which the number of updates
skews to higher and more complex features (upper lay-
ers). According to the experimental result of Table 3, the
”Fourth Strategy” had better performance in comparison
to the other learning strategy. This illustrates two im-
portant findings. First, providing the upper layers with
more time for learning than the lower layers can lead a
model to have higher performance than common trans-
fer learning. Second, based on the experimental results
of the ”Third and Second Strategies”, in cases where the
model has millions of parameters and the dataset under
study is incredibly small, applying the incremental train-
ing approach on a pre-trained network can deliver higher
performance than applying it on a non-pre-trained net-
work.

On the other hand, the Mask RCNN naturally cannot
classify data as a class without any specific object (i.e.
the normal class). In other words, this network is used in
tasks where each class of dataset contains masks to de-
termine the regions of interest which should be trained
by the network. However, in this study, Mask RCNN
was applied in a way that not only did detect different
lesions, but also classified images without any lesions as
the normal class. Moreover, in accordance with the ex-
perimental results of Figure 6, a new evaluation method
based on distortion was proposed to increase the perfor-
mance of the network in classifying normal images.

Recently, a variety of convolutional neural networks
have been proposed with different architectures of con-
volutional layers to propose different presentations. In
order to benefit from different representations for in-
creasing the performance of mammography image clas-
sification, six well-known convolutional neural net-
works have been trained using the DDSM and INbreast
datasets. Two of the models with higher performance
were chosen to create a hybrid architecture. According
to the experimental results in Table 5, the hybrid archi-
tecture with Mask RCNN-Xception had higher perfor-
mance than the hybrid architecture with Mask RCNN-

ResNet50. This showed that the former architecture (i.e.,
Mask RCNN-Xception) had provided better representa-
tions of images in comparison to other investigated ar-
chitecture.

5.2 Visualization of the model’s perception

Figure 9. Image A is a Normal image. Images B and C (augmented
Image B) show the different regions which were detected by the model.
As a result Image D does not show any region and the image was cor-
rectly classified as a Normal image.

Figure 10. Image A with an area illustrating a mass lesion in the
breast X-ray image. Image B shows that the model detected not only
the correct region of interest, but also the wrong regions. Also, the
model detected the same regions on the augmented image. As a result,
Image D illustrates the mass area as well as other regions. Finally, this
images has been classified as the Mass class.

Recently, deep convolutional neural networks have nu-
merically shown that they can have promising results in
a wide variety of tasks. However, in some critical fields
such as medicine, reliance of the deep convolutional neu-
ral networks on appropriate features should be visually
interpreted or explained. One of the significant advan-
tages of Mask RCNN is identifying the region of im-
age, based on which the model has made a decision. In
this subsection, the visualization results of the proposed
algorithm are explained. In Figure 9, Images B and C
(augmented Image B) show the different regions which
were detected by model. As a result, Image D does not
show any region and the image was correctly classified
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as a normal image. Figure 9 shows that the model cor-
rectly classified Image B as the normal class, while it
classified the augmented Image B (Image C) as the tu-
mor class and detected a wrong area as a tumor lesion.
As a result, Image D was classified as the normal class.

Figure 10 includes an Image A with an area illustrat-
ing a mass lesion in the breast X-ray image. Image B
shows that the model detected not only the correct re-
gion of interest, but also the wrong regions. In addition,
the model detected the same regions on the augmented
Image B (i.e. image C). As a result, Image D illustrates
the mass area as well as other regions. Finally, this image
was classified as the Mass class. Figure 10 demonstrates
a tumor image. In this experiment, the model detects
the correct region of interest in both non-augmented and
augmented images. As a result, image D shows the final
detected region as a tumor lesion.

6 Conclusion
Deep Convolutional Neural Networks (DCNNs) have

opened their ways into various medical image process-
ing practices such as Computer-Aided Diagnosis (CAD)
systems, especially in detecting and classifying abnor-
malities in mammograms such as masses, and calcifi-
cation. Despite significant achievements of DCNNs in
detecting lesions, especially in detecting and classifying
breast lesions tasks, there are still some open challenges
in the related works. For example, First, there is a short-
age of decision making explanations of the proposed
deep models. Also, lack of collaboration between radiol-
ogy experts and computer science specialists is another
weakness in the works. Moreover, lack of CNN models
to classifying multiple breast lesions mass, calcification,
and normal is common drawback in the recent works.
Finally, a common transfer learning strategy to take ad-
vantage of a pre-trained CNN for the tasks such as de-
tection and classification of breast images is other short-
age in the related works. To cope with the mentioned
issues efficiently, we used an incremental training strat-
egy, which instead of training a neural network mono-
tonically, divides the training epochs into several supere-
pochs in such a way that each superepoch subsumes sev-
eral epochs. MASK RCNN is the base CNN model used
in this study. We modified MASK RCNN which not only
detects mass and calcification lesions but also classifies
the normal images. Moreover, the proposed model bene-
fits from a hybrid architecture including different CNNs,
which provide efficient proposals from images, thus in-
creasing the performance of mammography classifica-
tion in comparison to the related works. Besides, in-
stead of using multiple CNNs independently to classify
images based on voting among them, the present study
proposed an incremental training approach that bene-
fits only from one CNN architecture to make decisions
based on voting from fed images from different distor-
tions. In addition, we provided a set of visualizations of
the model’s outputs to explain how and based on what

image features the proposed CNN makes its decisions.
Finally and importantly, we had a radiologist who eval-
uated the images and the performance of the proposed
model. Although, we designed a CNN model to cope
efficiently with one of the main challenges in the related
works (i.e., lack of clinical images), diversity of images
was one of our limitations in the current study. There-
fore, applying a across clinical adaption to increase the
performance of the model on the wide range of sources
of the clinical images from different hospitals is one of
the follow-up work in this project.
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