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Abstract
The existence of parametric resonance and transient

phenomena in nonlinear systems under the action of an
external force is an important characteristic of dynam-
ical systems. Nonlinear vibrations of a thin stretched
string, with an alternating electric current passing
through, in a non-uniform magnetic field are described
by complicated equations of motion. The general math-
ematical model involves modes coupling by means of
the intrinsic and improper nonlinearities; the string also
suffers Joule heating. The purpose of the work is to
study the combined effect of the intrinsic (geometrical)
nonlinearity and Joule heating on the elastic string os-
cillation in the frame of a simplified model. We use
a combined analytical-numerical approach in studying
the dynamics of the proposed model. First, we solve
our model analytically by iterations; then we solve
it numerically. Both analytical and numerical results
show a good agreement almost everywhere but in small
intervals near resonant frequencies of different modes.
It was found that numerical solutions show instabili-
ties near resonant frequencies in contrast to that of the
approximate analytical solutions by iterations. We ex-
plain those instabilities using the theory of Mathieu
equations.
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1 Introduction
Elastic string is a basic and fundamental system in

the theory of wave propagation. In particular, a string
conducting electric current in a magnetic field shows
complex nonlinear oscillations [Kourmychev, 1998].
This system with spatially distributed parameters is
described by nonlinear models, even if the amplitude
of string vibrations is small. The current carrying
string shows nonlinearities of the two types, the in-

trinsic and the improper. The intrinsic nonlinearity
observed in any string is due to the variation of ten-
sion caused by elongation of the string at the transverse
oscillation [Armstrong, 1982; Elliot, 1980; Tufillaro,
1989]. The improper nonlinearity is a specific charac-
teristic of a current carrying string due to the interac-
tion between electric current and magnetic field. Non-
linearities cause coupling between transverse modes
[Kourmychev, 1998].

2 Mathematical Model
The intrinsic nonlinearity in oscillation of the string is

the result of alternating increase of string tension due
to the elongation of the string. On the other hand, the
Joule heating by the electric current causes dilatation
of the string, and consequently the alternating decrease
of tension. To include the two opposite effects in the
model we proceed the following way. At a constant
magnetic field the driving force of oscillations is gov-
erned by the current, I(t) = I0 cos (Ωt) that causes
Joule heating, Q = I2R. Temperature variation on a
string is taken to be, ∆T (t) = ∆T0+ δ cos2 (Ωt− φ),
φ is a phase shift. After some algebra using the
Hooke’s law we obtain time variation in the tension of
string, FT = Fst − λαδ cos2 (Ωt− φ), Fst = F −
λα∆T0. Tension is decreased by the heating of string.
Harmonic heating varies the transverse wave velocity,(
C2

t

)
T

= (F/ρ)T =
[
Fst − λαδ cos2 (Ωt− φ)

]
/ρ,

longitudinal wave velocity remains the same,
(
C2

l

)
T
=

(λ/ρ)T
∼= λ/ρ, ρ is the linear density of the string. The

equation of small amplitude transverse vibrations in a
thin string of longitude L in the xz-plane follows from
[Watzky, 1992]:

ẍ+ 2βẋ−
[
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t −
λαδ

ρ
cos2 (Ωt− φ)

]
x′′−

C2
l x
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∫ L

0

(
x′)2 dz = f̃(z) cos(Ωt) (1)

where x (t, z) is a transverse displacement of the string
in the point z; ẋ and x′ are the time and z partial deriva-
tives; β is a damping coefficient; Ω is the frequency of
external force f̃(z) cos(Ωt), Ct and Cl are the veloc-
ities of transverse and longitudinal waves. From (1)
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we conclude that under the accepted approximations
the variation of temperature in an elastic string is man-
ifested through the variation of the transverse wave ve-
locity, linearly; while the elongation of the string dur-
ing its oscillation is expressed nonlinearly through the
integral (geometric, intrinsic nonlinearity).

3 The Effect of Heating on the
Vibrations of a String

In order to understand better the influence of heating
on the oscillation of the string we separate ther-
mal effect neglecting the geometrical nonlinearity ex-
pressed by the integral term in equation (1). After
studying the heating effect, we incorporate the geomet-
rical nonlinearity into the equation again. This pro-
cedure allows us to use a hybrid analytical-numerical
technique for the solution of equation (1), because the
linear equation with the only thermal effect can be
solved analytically by iterations. Iterative procedure
differs of the standard multiple scales expansion in per-
turbation method that was used by [Kidachi and Onogi,
1997] in studying of stability of Mathieu equation. So,
neglecting the proper nonlinearity in (1), we obtain the
equation

ẍ+2βẋ−
[
C̆2

t −
λαδ

ρ
cos2 (Ωt− φ)

]
x′′ = f̃(z) cos(Ωt) (2)

that describes the effect of heating on a string vibra-
tion. Separating variables, equation (2) is reduced to
the equation for normal modes, Xn(z) = sin(knz).
The equation for the temporal part of inhomogeneous
equation (2), corresponding to the n-th normal mode,
is as follows

d2Tn

dt2
+ 2β

dTn

dt
+[

C̆2
t −

λαδ

ρ

1 + cos (2Ωt− 2φ)

2

]
k2nTn = fn cos(Ωt) (3)

where f̃(z) = ΣnfnXn(z). Figure 1 shows the
numerical solution of (3) for n = 1 and different
frequencies of driving force. The solution is diverged
in the small vicinity of resonant frequency.

Solution by iterations. Equation (3) can be solved
by iterations [Kourmychev, 2003]. The approximate
solution at the i-th iteration is the solution of (4) for
n = 1, 2, ...

d2T
(i)
n

dt2
+ 2β

dT
(i)
n

dt
+

[
C̆2

t −
λαδ

2ρ

]
k2nT

(i)
n =

fn cos(Ωt) +
λαδ

ρ

cos (2Ωt− 2φ)

2
k2nT

(i−1)
n (4)

First iteration analytical solution of (4) is given by the
following expression:

T
(1)
n (t) = e−βta0 cos (ω̂t− δ0)+

e−βta3 cos [(2Ω + ω̃n)t− θ1 − δ3] +

e−βta4 cos [(2Ω− ω̃n)t− θ2 − δ4] +

a1 cos (Ωt− χ1 − δ1)+

a2 cos (3Ωt− 2φ− χ− δ2) (5)

This solution, being plotted for different frequencies
of driving force, shows the behavior similar to that of

(a)

(b)

(c)

Figure 1. Numerical solution of the nonlinear inhomogeneous equation (3),

for the first normal mode n = 1 at ∆T0 = 5◦C, δ = 0.5◦C, φ = π/48

and fn = 0.1: (a) Ω = 30 Hz, (b) Ω = 30.5 Hz, (c) Ω = Ωr

figure 1 for Ω = 30Hz and Ω = 30.5 Hz, but it does
not diverge in the vicinity of Ωr = 30.67 Hz. When
the frequency of driving force is close to the resonant
frequency of the m-th normal mode, then the first order
approximate solution of equation (3) is

x(z, t) =
∞∑
i=1

sin (kiz) · T
(1)
i (t) ≈ sin (kmz) · T (1)

m (t) (6)
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4 Intrinsic Nonlinearity and
the Heating of a String

To see the combined effect of intrinsic nonlinearity
and the heating, we use the approximate analytical so-
lution x(z, t) = T

(1)
m (t) sin(kmz), equation (6), to

evaluate the integral term of equation (1). Substitut-
ing x′ = T

(1)
m (t)km cos(kmz) into the integral term of

equation (1), integrating with respect to z and separat-
ing variables in normal modes Xn(z) = sin(knz) and
harmonics Tn(t), we get the equation

d2Tnm

dt2
+ 2β
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dt
+{

C̆2
t −
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ρ
cos2 (Ωt− φ) + C2

l

k3m
4

[
T

(1)
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]2}
k2nTnm =

fn cos(Ωt) (7)

where the second subindex m in Tnm(t) shows the de-
pendence of n-th harmonic on the harmonic m, T (1)

m (t)
that was chosen as the resonant mode. Equation (7)
is the linearization of equation (1), which describes
driven oscillations of a string subject to heating and in-
trinsic nonlinearity. Plots of numerical solutions of (7)
at three frequencies of driven force are presented in fig-
ure 2; in small vicinity of resonant frequency of m-th
harmonic, the huge (unphysical) increase of amplitude
is observed, similar to that of the model without heat-
ing, equation (3).

5 Stability of Oscillations
To explain the origin of divergence in solutions of

equations (3) and (7), see figure 1(c) and 2(c), let us
consider the homogeneous equation corresponding to
equation (3). Substitutions Tn(t) = e−βtu(t), z =
t − φ transform the homogeneous equation into the
Mathieu equation,

ũ′′(z) + [a− 2q cos(2z)] ũ(z) = 0 (8)

where a = â/Ω2, q = q̂/Ω2, â = k2n
(
c2t − λαδ/2ρ

)
−

β2 and q̂ = k2nλαδ/4ρ; a and q are the characteristic
parameters which determine the properties of the sys-
tem. Figure 3 shows the regions of stability and insta-
bility of Mathieu functions. According to [McLach-
lan, 1947], the solution of (8) is stable if the para-
metric point (q, a) is in the region between the curves
am and bm+1; it is unstable if (q, a) is between the
curves bm and am; it shows pulsations when the para-
metric point (q, a) is on the one of the curves sepa-
rating stable from unstable regions. Parameters of
the problem are: β = 0.1, α = 17 · 10−6 1/◦C,
λ = 2, 545 N , ρ = 2 · 10−4 kg/m, F = 0.98 N ,
L = 1m, ∆T0 = 5, 10 ◦C, δ = 0.5, 1 ◦C. For normal
modes n = 1, 2, 3 studied in this work, all the param-
eters given above are fixed, except the frequency Ω of
the external force, which was varied in an interval close
to the resonant frequency of each normal mode. As an
example, we present the analysis of stability in the case
of normal mode n = 1 and ∆T0 = 5 ◦C. In case of
other modes and/or ∆T0 = 10 ◦C the analysis is simi-
lar. At Ω = 30Hz the parametric point A in figure 4, is
located between the characteristic curves a1 and b2; in

(a)

(b)

(c)

Figure 2. Numerical solution of the linearized Eq. (7), for the first normal

mode n = 1 and first iteration T
(1)
1 (t) at ∆T0 = 5◦C, δ = 0.5◦C,

φ = π/48 and fn = 0.1: (a) Ω = 30Hz, (b) Ω = 30.5Hz, (c) Ω = Ωr

this case the solution is a stable periodic Mathieu func-
tion. Similar behavior is observed for the point D at
Ω = 30.7Hz. At Ω = 30.5Hz the point B in figure 4
is localized near the curve that separates the regions of
stability and instability. So either numerical or approx-
imate analytical solution shows pulsations (see figures
1(b) and 2(b)). When Ω = Ωr = 30.67 Hz, the point
C in figure 4 is localized in the region of instability be-
tween the curves b1 and a1, see figure 1(c). Analytical
solution, equation (5) shows notable increase of ampli-
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Figure 3. Stability regions for the Mathieu functions, reproduced from

[NIST, 2010]

Figure 4. Position of the parametric point (q, a) for the first normal mode,

n = 1, equation (8). Points A, B, C and D correspond to the ∆T0 = 5◦C,

and the points A’, B’, C’ y D’ corresponds to the ∆T0 = 10◦C.

tude but not the divergence at Ω ≈ Ωr.

6 Conclusions
A model of oscillations that includes both the heating

and intrinsic nonlinear effects in vibrating string was
proposed. A combined analytical-numerical technique
was used to study the dynamics of oscillations. The
comparing of numerical and approximate analytical so-
lutions permitted us to establish the range of validity
for the approximate analytical solutions. Parametric
resonance in vibrating string subject to the harmonic
heating was found to cause the divergence of solutions

in an interval of frequencies close to the resonant one;
this was not observed in the case of approximate ana-
lytical solutions. The observed instability of solutions
was found to be of the Mathieu type. We established
the range of parameters at which the solutions are di-
verged; the range of near resonant frequencies where
solutions are unstable, increases with the increase of
heating. Because heating and intrinsic nonlinearity are
opposite acting effects, it was expected that the intrin-
sic nonlinearity would suppress the divergence caused
by the parametric resonance. This was not confirmed in
the linearized version of equation (1): numerical solu-
tion of (7) also shows the divergence at the frequencies
nearby the resonant one of each normal mode. In the
frame of the proposed model, the intrinsic nonlinear-
ity is not able to suppress the divergence of solutions
caused by harmonic heating at frequencies close to the
resonant. Modified model is in the process.
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