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Abstract
We study synchronization in delay-coupled neural

networks of heterogeneous nodes. It is well known that
heterogeneities in the nodes hinder synchronization
when becoming too large. We show that an adaptive
tuning of the coupling matrix can be used to counteract
the effect of the heterogeneity. Our adaptive controller
is demonstrated on ring networks of FitzHugh-Nagumo
systems which are paradigmatic for excitable dynam-
ics but can also – depending on the system parame-
ters – exhibit self-sustained periodic firing. We show
that the adaptively tuned time-delayed coupling en-
ables synchronization even if parameter heterogeneities
are so large that excitable nodes coexist with oscillatory
ones.
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1 Introduction
The ability to control nonlinear dynamical systems

has brought up a wide interdisciplinary area of research
that has evolved rapidly in the past decades [Schöll
and Schuster, 2008]. Besides the control of isolated
systems, control of dynamics in spatiotemporal sys-
tems and on networks has recently gained much interest
[Kehrt et al., 2009; Hövel, Dahlem and Schöll, 2010;
Flunkert et al., 2010; Omelchenko et al., 2011]. Adap-
tive control methods are of particular interest in situa-
tions where parameters drift or are uncertain and have
been successfully applied in the control of network dy-
namics [Selivanov et al., 2012; Lehnert et al., 2014].
Here, we show that they also can be used to counteract

the effect of heterogeneous nodes in the synchroniza-
tion of delay-coupled networks.
Synchronization in neural networks has gained a lot of

attention lately [Lehnert et al., 2011] since it is involved
in processes as diverse as learning and visual percep-
tion on the one hand [Fries, 2005; Uhlhaas et al., 2009;
Singer, 1999] and the occurrence of Parkinson’s dis-
ease and epilepsy on the other hand [Tass et al., 1998;
Poeck and Hacke, 2001; Uhlhaas et al., 2009]. Control
of synchronization has so far focused on networks of
identical nodes [Zhou, Lu and Lu, 2008; Lu and Qin,
2009; Lu et al., 2012; Selivanov et al., 2012; Guzenko,
Lehnert and Schöll, 2013; Lehnert et al., 2014]. How-
ever, in realistic networks the nodes will always be
characterized by some diversity meaning that the pa-
rameters of the different nodes are not identical but
drawn from a distribution. It is well known that such
heterogeneities in the nodes can hinder or prevent syn-
chronization and that the coupling strength is a crucial
parameter in this context [Strogatz, 2000; Sun, Bollt
and Nishikawa, 2009]. Here, we develop a method to
adaptively control synchronization in networks of het-
erogeneous nodes.
Our method is based on the speed-gradient (SG)

method, which was previously used in the control
of delay-coupled networks [Selivanov et al., 2012;
Guzenko, Lehnert and Schöll, 2013; Lehnert et al.,
2014], however, not in the presence of node hetero-
geneities. In order to apply the SG method, we sug-
gest a goal function which characterizes the quality
of synchronization. Based on this measure an adap-
tive controller is developed which ensures synchro-
nization even if the parameter heterogeneities become
such large that some nodes – if uncoupled – undergo a
Hopf bifurcation and behave distinctly different from



the other nodes in the network. We demonstrate
our algorithm on the FitzHugh-Nagumo (FHN) system
[FitzHugh, 1961; Nagumo, Arimoto and Yoshizawa,
1962], a generic model for neural dynamics.
The paper is organized as follows: Section 2 is a reca-

pitulation of the SG method, while Sec. 3 introduces
the model. Section 4 discusses development of the
adaptive control algorithm for two delay-coupled FHN
systems. In Sec. 5, the method is generalized to larger
ring networks. Finally, we conclude with Sec. 6.

2 Speed-Gradient Method
In this section, we briefly review the speed-gradient

(SG) method [Fradkov, 2007]. Consider a general non-
linear dynamical system

ẋ = F(x,g, t) (1)

with state vector x ∈ Cn, input (control) variables g ∈
Cm, and nonlinear function F. Define a control goal

Q(x(t), t) 6 ∆, (2)

for t > t∗, where Q(x, t) > 0 is a smooth scalar goal
function and ∆ is the desired level of precision. For
example, if we want to force the trajectory of system
(1) to follow the desired trajectory x∗(t), we can use a
goal function in the form Q(x(t)) = (x(t)− x∗(t))2.
In order to design a control algorithm, the scalar func-

tion Q̇ = ω(x,g, t) is calculated, that is, the speed
(rate) at which Q(x(t), t) is changing along the trajec-
tories of Eq. (1):

ω(x,g, t) =
∂Q(x, t)

∂t
+ [∇xQ(x, t)]TF(x,g, t). (3)

Then the gradient of ω(x,g, t) with respect to the input
variables is evaluated as

∇gω(x,g, t) = ∇g[∇xQ(x, t)]TF(x,g, t). (4)

Finally, we obtain the control function g from

g(t) = g0 − ψ(x,g, t), (5)

where the vector function ψ(x,g, t) = γ∇gω(x,g, t)
with some adaptation gain γ > 0, and g0 = const
is an initial (reference) control value (often g0 = 0 is
assumed). The algorithm (5) is called speed-gradient
(SG) algorithm in finite form since it suggests to change
g proportionally to the gradient of the speed of chang-
ing Q.
Several analytic conditions exist guaranteeing that the

control goal (2) can be achieved in system (1) and (5).

The main condition is the existence of a constant value
of the parameter g∗, ensuring attainability of the goal in
the system dx/dt = F(x,g∗, t). Details can be found
in the control-related literature [Fradkov, 1979; Shiri-
aev and Fradkov, 2000].
The idea of this algorithm is the following: The term
−∇gω(x,g, t) points to the direction in which the
value of Q̇ decreases with the highest speed. There-
fore, if one forces the control signal to ”follow” this
direction, the value of Q̇ will decrease and finally be
negative. When Q̇ < 0, thenQwill decrease and, even-
tually, will tend to zero.

3 Model equation
The local dynamics of each node in the network is

modeled by the FitzHugh-Nagumo (FHN) differen-
tial equations [FitzHugh, 1961; Nagumo, Arimoto and
Yoshizawa, 1962]. The FHN model is paradigmatic for
excitable dynamics close to a Hopf bifurcation [Lind-
ner et al., 2004], which is not only characteristic for
neurons but also occurs in the context of other systems
ranging from electronic circuits [Heinrich et al., 2010]
to cardiovascular tissues and the climate system [Mur-
ray, 1993; Izhikevich, 2000]. Each node of the network
is described as follows:

εu̇i = ui −
u3i
3
− vi +

N∑
j=1

Cij [uj(t− τ)− ui(t)],

v̇i = ui + ai, i = 1, . . . , N,
(6)

where ui and vi denote the activator and inhibitor vari-
able of the nodes i = 1, . . . , N , respectively. τ is the
delay, i.e., the time the signal needs to propagate be-
tween node i and j (here we will use τ = 1.5). ε is a
time-scale parameter and typically small (here we will
use ε = 0.1), i.e., ui is a fast variable, while vi changes
slowly. The coupling matrix C = {Cij} defines the
coupling strength between the nodes.
In the uncoupled system (Cij = 0, i, j = 1, . . . , N ),
ai is a threshold parameter: For ai > 1 the ith node
of the system is excitable, while for ai < 1 it exhibits
self-sustained periodic firing. This is due to a super-
critical Hopf bifurcation at ai = 1 with a locally sta-
ble equilibrium point for ai > 1 and a stable limit
cycle for ai < 1. In previous publications, networks
of homogeneous FHN systems were considered, i.e.,
a1 = a2 = . . . = aN ≡ a [Brandstetter, Dahlem and
Schöll, 2009; Schöll et al. 2008; Lehnert et al., 2011;
Cakan, Lehnert and Schöll, 2009]. In particular, it was
shown that for excitable systems, i.e., a > 1 and cou-
pling matrices with positive entries zero-lag synchro-
nization is always a stable solution independently of
the coupling strength and delay time (as long as both
are large enough to induce any spiking at all).
Here, we investigate the case of heterogeneous nodes.

In this case, perfect synchronization, i.e., (u1, v1) =
. . . = (uN , vN ) ≡ (us, vs), is no longer a solu-
tion of Eq. (6) which can easily be seen by plugging



(u1, v1) = . . . = (uN , vN ) ≡ (us, vs) into Eq. (6).
The node dynamics is then described by

εu̇s = us −
u3s
3
− vs +

N∑
j=1

Cij [us(t− τ)− us(t)],

v̇s = us + ai, i = 1, . . . , N,
(7)

which is obviously not independent of i. This means
that a perfectly synchronous solution does not exist in
system (6) because the prerequisite for the existence
of such a solution is that each node receives the same
input if all nodes are in synchrony. However, solutions
close to the synchronous solution might exist where the
nodes spike at the same (or almost the same) time but
with slightly different amplitudes. As we show, these
solutions can be reached and stabilized by an adaptive
tuning of the coupling matrix.

4 Two delay-coupled FitzHugh-Nagumo systems
This Section studies the most basic network mo-

tif consisting of two coupled systems without self-
feedback. Consider two coupled FHN-systems with
heterogeneous threshold parameters and bidirectional
coupling

εu̇1 = u1 −
u31
3
− v1 + C12[u2(t− τ)− u1(t)],

v̇1 = u1 + a1,

εu̇2 = u2 −
u32
3
− v2 + C21[u1(t− τ)− u2(t)],

v̇2 = u2 + a2.

(8)

We now want to apply the SG method to system (8)
with the goal to synchronize the two heterogeneous
nodes. As discussed above perfect synchronization in
the form (u1, v1) = (u2, v2) is not attainable in this
case but the two systems will follow slightly different
trajectories in the synchronized case. We, therefore,
use as a goal function

Q(x(t), t) =
ε

2
(u1(t)− u2(t) + a1 − a2)2

+
1

2
(v1(t)− v2(t))2. (9)

The choice (9) ensures that the system follows trajec-
tories for which

u1(t)− u2(t) ≈ −a1 + a2,

v1(t)− v2(t) ≈ 0,
(10)

holds for t > t∗. Approximations (10) directly follow
from the chosen goal function (9). Thus, the goal func-
tion (9) yields synchronization with a shift in the values

(a) (b)

(c) (d)
Figure 1. Dynamics of two coupled FitzHugh-Nagumo systems ac-
cording to Eq. (8) with constant coupling matrixC. Green solid line
marks node one, red line with circles marks node two. (a) and (b):
time series of the activator and the inhibitor, respectively; (c): differ-
ence u1 − u2 between the activator values, and (d): phase space.
Parameters: N = 2, ε = 0.1, τ = 1.5, a1 = 1.1, a2 = 0.7,
C12 = C21 = 1. Initial conditions: ui(t) = vi(t) = 0,
i = 1, 2, for t ∈ [−τ, 0].

of the activators and synchronization of the inhibitors
of the two nodes.
From Eq. (5) with g = C, system (8), goal func-

tion (9), and ψ(x,C, t) = γ∇Cω(x,C, t) an adaptive
law is straightforwardly derived:

C12(t) = C0
12 − γ(u1(t)− u2(t) + a1 − a2)

×(u2(t− τ)− u1(t)),

C21(t) = C0
21 − γ(u2(t)− u1(t) + a2 − a1)

×(u1(t− τ)− u2(t)),

(11)

where γ > 0 is the gain and C0
12, C0

21 are the initial
values of the control parameter. The appropriate value
of γ has to be determined by numerical simulations.
Note that a similar approach has been used to tune the
coupling strength in a network of Rössler systems in
the paper [Guzenko, Lehnert and Schöll, 2013].
For constant coupling strength, i.e., γ = 0, the two

coupled FHN systems do not synchronize in-phase, but
approach an anti-phase synchronized state: Figure 1
shows in panels (a) and (b) the time series of the ac-
tivators and the inhibitors, respectively, and in panel
(d) the phase portrait. Though the first node is in the
excitable regime (a1 = 1.1 > 1) both nodes oscillate
due to the nonzero coupling matrix C. However, they
do not synchronize as can clearly be seen in panel (c)
which depicts the difference u1 − u2 between the acti-
vator values. Instead, they phase lock with a phase shift
of approximately π which corresponds to an anti-phase
synchronized state.
We now adapt the coupling strength according to

Eq. (11) in order to synchronize the two systems where



(a) (b)

(c) (d)

(e) (f)
Figure 2. Adaptive control of two coupled FitzHugh-Nagumo sys-
tems (Eq. (8)). (a) and (b): time series of the activator and the in-
hibitor, respectively; (c) and (d): differences between the activator
and the inhibitor values, respectively; (e): phase space, (f): time se-
ries of the coupling strength adapted according to Eq. (11). Param-
eters: γ = 20, C0

12 = C0
21 = 0. Other parameters and initial

conditions as in Fig 1.

the result is shown in Fig. 2. The two systems reach
the desired synchronized state (see the time series of
the activators and the inhibitors in Fig. 2(a),(b), re-
spectively, and the difference between their values in
Fig. 2(c),(d)). Thus, the control is successful.

5 Adaptive Synchronization in ring networks

We now want to apply our method to larger networks.
To this end, we consider a ring network of N nodes
where the coupling matrix C has the following form

C =


0 C12 0 · · · 0
0 0 C23 · · · 0
...

...
. . . . . .

...

0 0
. . . . . . C(N−1)N

CN1 0 0 · · · 0

 . (12)

As in the case of two nodes, from Eq. (5) with g = C,

(a)

(b)
Figure 3. Adaptive control of synchronization of a ring of ten
FitzHugh-Nagumo systems according to Eq. (6) with coupling ma-
trix (12). (a) and (b): time series of the activator and the inhibitor of
all nodes, respectively. Parameters: N = 10, ε = 0.1, τ = 1.5,
γ = 10, C0

i(i+1) mod N = 0, i = 1, . . . , N . Initial condi-

tions: ui(t) = 0, vi(t) = 0, i = 1, . . . , N , for t ∈ [−τ, 0].

goal function

Q(x(t), t) =
1

2

N∑
i=1

[
ε(ui(t)− u(i+1) mod N (t)

+ ai − a(i+1) mod N )2

+ (vi(t)− v(i+1) mod N (t))2
]
, (13)

and

ψ(x,C, t) = γ∇Cω(x,C, t), (14)

we derive the following adaption law

Ci(i+1) mod N (t) = C0
i(i+1) mod N

− γ
[
2ui(t)− u(i−1) mod N (t)− u(i+1) mod N (t)

+ 2ai − a(i−1) mod N (t)− a(i+1) mod N (t)
]

× (ui(t)− u(i+1) mod N (t− τ)), (15)

where γ is the gain and C0
i(i+1) mod N , i = 1, . . . , N is

the initial value of the corresponding control parameter.
Figure 3 presents the results of a simulation of the

plant (6) with adaption law (15). This method pro-
vides a synchronization of the activators with the shift
in the values (see the time series of the activators in
Fig. (3)(a)) and synchronization of the inhibitors (see
the time series of the inhibitors in Fig. (3)(b)) for all
nodes.

6 Conclusion
We have proposed a novel adaptive method for con-

trolling synchrony in heterogeneous networks. It is



well known that networks with heterogeneous nodes
are much less likely to synchronize than networks of
identical nodes. Furthermore, synchrony will take
place in a state where the trajectories of the different
nodes are not identical but small deviations can be ob-
served. We have suggested a goal function to character-
ize this type of synchrony. Based on this goal function
and the speed-gradient (SG) method, we have derived
an adaptive controller which tunes the coupling matrix
such that synchrony is stable despite the node hetero-
geneities.
We have demonstrated our method on networks of

FitzHugh-Nagumo systems, a neural model which is
considered to be generic for excitable systems close to
a Hopf bifurcation. We have started our consideration
from the simple motif of two delay-coupled, hetero-
geneous nodes. After that, we have generalized our
method to larger networks and applied it to ring net-
works. It has been shown that our method enables
synchronization even if the node parameters are cho-
sen such diverse that one of the systems would exhibit
self-sustained oscillations without coupling, while the
other one would remain in a stable equilibrium point,
i.e., one of the uncoupled systems is above, and the
other is below the Hopf bifurcation.
Given the paradigmatic nature of the FitzHugh-

Nagumo system, we expect our method to be appli-
cable in a wide range of excitable systems. Further-
more, the application of the SG method to the con-
trol of networks with heterogeneous nodes suggests
that other adaptive controllers that are based on the SG
method [Selivanov et al., 2012; E. Schöll et al., 2012;
Guzenko, Lehnert and Schöll, 2013; Lehnert et al.,
2014] are also robust towards heterogeneities.
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