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Abstract
Oscillations of fluid free surface in a rigid tank raised

by an electromotor of limited power-supply are consid-
ered. At examination of steady-stated chaotic regimes
of oscillations of this deterministic system the new sce-
nario of transition to chaotic motions is established and
described. The described scenario is generalization of
the known scenario of transition to chaos through inter-
mittency in the sense of Pomeau–Manneville.
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1 Introduction
The problem of scenario disclosure of transition from

one type steady-stated regimes to others, in particu-
lar, from the regular regimes to chaotic is one of the
most interesting in theory of dynamic systems. To the
present time enormous number of types of the strange
attractors in dynamic systems of the most different na-
ture are revealed and described. However, the number
of known scenarios of transition between steady-stated
regimes of different types remains rather small. There-
fore, detection of new scenarios of transition to chaos
is an interesting and actual scientific problem of non-
linear dynamics.
To the present time the three basic types of scenarios

of transitions from the regular regimes to chaotic in the
theory of dynamical systems are described, namely: (i)
transition to chaos through the infinite cascade of bifur-
cations of period doubling of limit cycles (Feigenbaum
scenario), (ii) transition to chaos through an intermit-
tency in the sense of Pomeau - Manneville and (iii)
transition to chaos through destruction of quasiperiodic
attractors (Newhouse, Ruelle, Takens). All this basic
scenarios is described in [Kouznetsov, 2001].

2 Theoretical model
In many practically important cases the interaction of

a vibrating system with an excitation mechanism plays
a defining role for its dynamical behaviour. This inter-
action always exists because of the law of conservation
of energy. When the vibrating system possesses damp-
ing (actually damping is present in all real systems), the
dissipation of the energy could introduce essential cor-
rections into the regimes of mechanism functioning. In
this way, the vibrating system influences the parameters
of the excitation force. This influence is considered sig-
nificant when the power of the excitation mechanism is
comparable to the power dissipated in the vibrating sys-
tem. In this case the vibrating system has a limited ex-
citation and the mechanism has a limited power-supply,
as was stated by Kononenko [Kononenko, 1969]. This
situation is considered in the present study.
Let’s consider a dynamical system which mathemati-

cal model in the following form:
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The system of equations (1) for the first time has been



obtained in works [Krasnopolskaya & Shvets, 1990,
1992] and describes oscillations of a fluid free surface
in a rigid cylindrical tank raised by the electromotor of
a limited power–supply. Here phase coordinatesp1, q1

and p2, q2 – coefficients of amplitude expansions of
fluid free surface oscillations of the first and second
dominant modes; phase coordinateβ – the detuning of
the eigenfrequency of the dominant modes and a ve-
locity of the shaft rotation of the electromotor;α1 - re-
duced coefficient of a viscous damping force;µ1 – co-
efficient of proportionality of the vibrational moment;
N1 – angle of an inclination of the static characteristic
of the electromotor [Kononenko, 1969]. ParametersA,
B are the constants depending on radius of a tank and
height of filled fluid in it [Miles, 1984]. ValueN3 is
determined by the formula (2):
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hereR is the radius of a tank,ω11 – the eigenfrequency
of the fluid free surface oscillation of the dominant
modes,a is the length of a crank,N0 is the constant
component of the electromotor static characteristic.
The considered system is the deterministic dynamical

system with limited excitation. Existence of chaotic
regimes at limited excitation of a tank for the first
time has been proved in the work [Krasnopolskaya &
Shvets, 1990]. However, in this work the proof of ex-
istence of such regimes is carried out only for a spe-
cial case of planar oscillations of the fluid free surface.
Occurrence of chaotic regimes in more general case
of spatial oscillations of the free surface is established
in the works [Krasnopolskaya & Shvets, 1992, Shvets,
2006].

3 Results of numerical simulation
The system of equations (1) is essentially nonlinear

one, therefore the determination of its exact solutions
as analytical formulas in generally case is impossi-
ble. For determination of solutions of the system 1 nu-
merical methods and algorithms were used. In work
[Shvets, 2006] the procedure of such numerical calcu-
lations is designed and in details described.
Let’s assume that parameters of a system (1) are:

A = 1.112; B = 1.531; α1 = −0.1;

µ1 = 0.5; N3 = −0.1.
(3)

At carrying-out of numerical calculations initial con-
ditions were varied in a neighborhood of an origin of
coordinates in the phase space of system of equations
(1). As the carried out examinations have shown there
are stable equilibrium states at−0.1 < N1 < −0.05 in
a system. At these states the coordinates have values:

p1 = const; q1 = const; β = const; p2 = 0; q2 = 0.
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Figure 1. Projections of phase portrait (a) and of Poincaré section

(d) of chaotic attractor atN1 = −0.10164.

Thus, all stable equilibrium states have zero coordi-
nates for the second dominant mode in a neighbor-
hood of an origin of coordinates in the phase space at
−0.1 < N1 < −0.05. At N1 = −0.1 this equilibrium
state loses its stability and in the system (1) a peculiar
stable limit cycle with a zero second dominant mode
arises as a result of the Andronov - Hopf bifurcation.
The limit cycle has the following form:

p1 = f1(τ); q1 = f2(τ);β = f3(τ); p2 = 0; q2 = 0.

wheref1(τ), f2(τ) andf3(τ) are some periodic func-
tions ofτ .
At the valueN1 = −0.10153 a cascade of period

doubling bifurcations of limit cycles starts in a sys-
tem. This infinite cascade of period doubling bifur-
cations is completed by an origin of a chaotic attrac-
tor at N1 = −0.101632. In fig. 1.a–b phase portrait
projections of chaotic attractor constructed at the value
N1 = −0.10164 and its of Poincare section (by a plane
β = −1.55) are shown, accordingly. The chaotic at-
tractor has spiral structure, and its section of Poincare
is quasiribbon chaotic point sets. Transition to chaos
happens by Feigenbaum scenario [Feigenbaum, 1978].
We want to stress out the very interesting feature of the
chaotic attractor when all bifurcations of a cascade of
doubling of period of limit cycles and chaotic attrac-
tor have the zero second dominant mode of oscillations
(p2 = 0; q2 = 0). Such attractors we name as single-
mode one.
At N1 = −0.10165 the single-mode attractor disap-

pears and a chaotic attractor of completely other type
arises in the system. In fig. 2a–c different projections
of the chaotic attractor which arises in the system at
N1 = −0.10165 are given. First of all it differs from
the single-mode attractor by excitation of oscillations
of the second dominant mode. Secondly, amplitudes
of chaotic oscillations of the first dominant mode in-
crease. Due to this the phase space volume, in which
trajectories of the arisen chaotic attractor are localized,
increases. So, in fig. 2a it is possible to see the small
densely blacked out area in the neighborhood of the
point (1,0). This blacked out area approximately cor-
responds to area of localization in the phase space of
the missed single-mode attractor.



In fig. 2c the enlarged fragment of the chaotic attrac-
tor projection in the neighborhood of the point (1,0) is
given. The study of this fragment allows to detect a
noticeable similarity with the corresponding projection
of the single-mode attractor (fig.1a). It makes clear
that the mechanism of origin of the ”double-mode”
chaotic attractor is a result of an intermittency between
the missed chaotic single-mode attractor and a saddle
limit cycle existing on the neighborhood of localiza-
tion of the single-mode attractor in the phase space. At
N1 = −0.10165 the single-mode attractor and the sad-
dle cycle disappear and a new chaotic attractor arises in
the system (1), motion along trajectories of which con-
sist of three phases: laminar, turbulent and one more.
The last one we name as coarse grained laminar phase.
Motion which is close to periodic motion in the neigh-
borhood of the missed limit cycle (see densely retraced
trajectories at the left area in fig. 2a) corresponds to
the laminar phase. At unpredictable beforehand mo-
ment of time turbulent splash happens and trajectories
go away to the area of the missed single-mode chaotic
attractor (densely blacked out area in the neighborhood
of the point (1, 0) in fig. 2c). Then trajectories make
chaotic wanderings along coils of the missed single-
mode chaotic attractor during sufficiently long time.
We named this phase of motions as coarse grained lam-
inar as an analogy with the terminology used in the sta-
tistical physics [Gibbs, 1902]. Further, at unpredictable
moment of time, there is a new turbulent splash and
trajectories return to the area of the missed limit cycle.
The above described process iterates an infinite number
of times.
Thus, the intermittency distinct from the Pomeau

and Manneville classical types [Manneville & Pomeau,
1980, Pomeau & Manneville , 1980] takes place.
In fig. 2d the projection of Poincare section (by a

planeβ = −1.55) of the double-mode chaotic attractor
atN1 = −0.10165 is given. As is apparent from figure
the Poincare section loses the ribbon structure which
existed in the section of the single-mode attractor and
looks as some developed chaotic point set. However,
the close investigation of fig. 2d allows to find, that
the constituent of Poincare section of the double-mode
chaotic attractor is the ribbon of the missed single-
mode attractor. So, transition to chaos happens by
the scenario which is generalization Pomeau – Man-
neville known scenarios [Manneville & Pomeau, 1980,
Pomeau & Manneville , 1980].
Let’s consider now bifurcations which happen in the

system (1) when the static characteristic of the electro-
motor is changing by the value ofN3. We shall suggest,
thatN1 = −1, and valuesA, B, α1 andµ1 remain the
same, as in (3). We shall study some features of tran-
sition from the regular regimes to chaotic at changing
of the N3 value. So atN3 = −0.38 there is a stable
limit cycle in the system. At decreasing ofN3 values
infinite cascade of period doubling bifurcations begins.
This cascade brings to origination of a chaotic attractor
at N3 ≈ −0.395. The arisen chaotic attractor exists
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Figure 2. Projections of phase portrait (a-c) and of Poincaré section

(d) of chaotic attractor atN1 = −0.10165.
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Figure 3. Projections of phase portraits of chaotic attractor at

N3 = −0.39503 (a, b) and atN3 = −0.39504 (c, d).

in very small interval ofN3 changing and already at
N3 ≈ −0.39504 is replaced by a chaotic attractor of
other type as a result of an intermittency. The given sit-
uation reminds one which is considered earlier at study
of origin of chaos at changing of the parameterN1.
However, in the latter case, one essential difference is
present. Both limit cycles and a chaotic attractor origi-
nating by Feigenbaum scenario are not the single-mode
ones. They have oscillations of both dominant modes.
In fig. 3a–b projections of phase portraits of chaotic

attractors constructed, accordingly, atN3 = −0.39503
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Figure 4. Projections of Poincaré section of chaotic attractors at

N3 = −0.39503 (a) and atN3 = −0.39504 (d)

andN3 = −0.39504 are given. The chaotic attractor
presented in fig. 3b differs from the chaotic attractor
presented in fig. 3a due to noticeable increasing of vi-
bration amplitudes of both dominant modes. This gives
essential increasing of the phase space volume in which
the arisen attractor is localized. In fig. 3c-d these pro-
jections at large scale are presented. As it is well visi-
ble from these figures, the fragment of the projection of
the chaotic attractor atN3 = −0.39504 is qualitatively
similar to the chaotic attractor atN3 = −0.39503.
These figures make clear the mechanism of an inter-
mittency of the origin of one attractor from another. In
a point of a bifurcation the chaotic attractor from fig.
3c disappears and in the system (1) arise an attractor
of new type, motions of trajectories of which consist of
two phases. One of them, as well as earlier, we name
coarse grained laminar, represent chaotic wanderings
of trajectories along the arisen attractor in neighbor-
hoods of trajectories of the missed attractor. At unpre-
dictable moment of time trajectories ”are broken” and
leave to the remote areas of the phase space. It is the
turbulent phase of motions of trajectories. Then trajec-
tories again are returned in area of the missed attractor.
This process infinite number of times iterates.
In fig. 4a–b Poincare sections (by a planeβ = −0.5)

of these attractors are given. Both Poincare sections
are dot chaotic sets. One of sections (fig. 4b), as a frag-
ment, contains a set qualitatively similar to the second
section (fig. 4a), that confirms presence in the system
of an intermittency such as ”chaos – chaos”. Transi-
tion to chaos by the scenario distinguished from classi-
cal scenarios of Pomeau - Manneville is observed here
also.

4 Conclusions
As a result of investigating the nonlinear process of

interaction between the tank filled with fluid and the
electric motor with limited power-supply the following
conclusions can be drawn:
1. The existence of several types of chaotic attractors

was established for described system.
2. The new type of an intermittency ”chaos – chaos”

which generalized classical scenarioes of Pomeau –
Manneville was detected and carefully circumscribed.
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