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Abstract
We consider the dynamical systems, described by a

system of ordinary differential equations and impact
conditions of impulse type. Two mechanisms of forma-
tion of chaotic invariant sets are being studied. Some
popular numerical methods are justified. We present
some conditions, sufficient for a chaotic behavior of the
vibro-impact system and give sketches of proofs.
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1 Introduction
The vibro-impact systems appear in different mechan-

ical problems (modeling of clock mechanisms, immer-
sion of constructions, etc.). All the impact systems are
strongly nonlinear. Their properties resemble a lot ones
of classical nonlinear systems. Particularly, the chaotic
dynamics is possible.
There is a big number of publications, devoted to

bifurcations, proper to vibro-impact systems. It was
noted (see the list of references) that the chaotic
regimes may appear for different particular cases. For
example, the dynamics of a ball, jumping over a har-
monically oscillating surface has been studied in the
paper [Holmes, 1982]. These oscillations were mod-
eled by the following discrete system. Lettk be the
moments of impacts,yk be the corresponding veloci-
ties andT be the period of surface oscillations. The
considered dynamical system was described by a par-
ticulary continuous mapping which transfers the cou-
ple(yk, τk = tk mod T ), corresponding to the impact
numberk to one of the impact numberk + 1. It was
shown that if the periodT is big enough, the consid-
ered dynamical system has a hyperbolic invariant set,
similar to the ”Smale horseshoe”.
One of the mechanisms of chaos formation called

grazing has been introduced by Nordmark [Nordmark,
1991] (see also [Budd, 1995] and [Ivanov, 1996]).

The s.d.f. motion of a point mass under the action of
the restoring force, external force, friction and elastic
impacts has been studied in the paper [Kryzhevich and
Pliss, 2004]. It was supposed that the period of the ex-
ternal force is big. The conditions sufficient for chaotic
dynamics have been given. Also, the opposite case of
the unique and stable periodic solution has been stud-
ied. The systems with nonelastic impact were studied
in the paper [Gorbikov and Men’shenina, 2007]. These
systems may have solutions with infinitely many im-
pacts over a finite period of time (so-called chatter).
It was shown that in the neighborhood of chatter the
invariant sets, similar to the ”Smale horseshoe” (but
maybe not hyperbolic) may appear.

2 The mathematical model of vibro-impact sys-
tem.

Consider the mechanical system with several degrees
of freedom, given on free flight intervals by following
equations

ẋk = yk; ẏk = Fk(t, x1, y1, . . . , xn, yn, µ),
k = 1, . . . , n.

(2.1)

HereF is aC2 – smooth function, defined on the set

R× [0, +∞)× R2n−2 × [0, µ∗].

Suppose it isT – periodic to the respect of the variable
t. Introduce the notations

x = (x1, . . . , xn) = (x1, x̄),
y = (y1, . . . , yn) = (y1, ȳ),

z = (x, y), z̄ = (x̄, ȳ)
F (t, z, µ) = (F1(t, z, µ), . . . , Fn(t, z, µ)),

F 0(t, z̄, µ) = (F 0
1 (t, z̄, µ), . . . , F 0

n(t, z̄, µ)) = F (t, 0, 0, z̄, µ)

Suppose that the considered system satisfies the fol-
lowing impact conditions.



1. If x1(t0) = 0 theny1(t0 + 0) = −r1y1(t0 − 0),
ȳ(t0 + 0) = r̄ȳ(t0 − 0) Here

r1 = r1(x̄(t0), y(t0 − 0), µ) ∈ (0, 1]

and r̄ = r̄(x̄(t0), y(t0 − 0), µ) ∈ (0, 1] areC2 –
smooth functions of their arguments.

2. Let a solutionz(t) of the vibro-impact system is
such that

x1(t0) = y1(t0) = 0,

z̄(t0) = ζ0. Denote byζ(t) the solution of the
system

ẋk = yk; ẏk = Fk(t, 0, 0, x2, y2, . . . , xn, yn, µ), k = 2, . . . , n.

with the initial dataz̄(t0) = ζ0. Suppose there is
sucht1 > t0, thatF1(t, 0, 0, ζ(t), µ) 6 0 for all
t ∈ [t0, t1], thenx1(t) = y1(t) = 0 and z̄(t) =
ζ(t) for all t ∈ [t0, t1].

Denote the obtained vibro-impact system by (A).
It is natural from the physical point of wiev to assume

thatr1(x̄, y, µ) as well asr1(x̄, y, µ)
This type of impact dynamics has been studied by

different authors (see the reference list). The results
on main properties like existence, uniqueness, bound-
ness of solutions can be found in [Babitskiy, 1998]
and [Schatzmann, 1998]. The description of bifurca-
tions, proper to impact systems can be found in the
articles [Fredriksson, Nordmark, 1997] and [Ivanov,
1996]. Different results on chaotic dynamics, arising
in impact systems have been established in the referred
papers (of course, the list is not complete). Here we
consider the so-called Devaney chaos [Devaney, 1987].
Definition. Let S be a diffeomorphism of a Euclidean

space or of a smooth manifold. We say, the hyperbolic
invariant setK is chaotic if

1. periodic points ofS are dense inK;
2. K is transitive, i.e. there is a pointp, whose orbit
{Sn(p) : n ∈ Z} is dense inK.

3 Grazing bifurcation.
Condition 3.1. Suppose there exists a continuous

family of T – periodic solutions of the system (A)

φ(t, µ) = (φx1(t, µ), φy1(t, µ), . . . , φxn(t, µ), φyn(t, µ).

1. If µ > 0, the normal componentφx1(t) has exactly
N + 1 zeros

τ0(µ) < . . . < τN (µ)

over the period, such that all impact instantsτj(µ)
and velocities

Yj = −φy1(τj(µ)− 0, µ)

areC2 – smooth functions ofµ.
2. The velocitiesYj(µ) are such thatYj > 0 if µ > 0

or j > 0 andY0(0) = 0.

Without loss of generalty suppose thatτ0(µ)̇ = 0 for
all µ. Let θ > 0 be a small parameter. Consider the
shift mappingSµ,θ defined by the formulaSµ,θ(z0) =
z(Tθ + 0,−θ, z0, µ) and the matrix

A = lim
µ,θ→0+

∂z

∂z0
(T − θ, θ, z0, µ).

Let aij (i, j ∈ {1, . . . , 2n} be the elements of the ma-
trix A andαij be ones of the matrixA−1). Suppose
σj = 1 if j is odd andσj = r(φ̄x(0−), φy(0−), 0) if j
is even. Consider the2n−2×2n−2 matricesĀ = (āij)
andÃ = (ãij) defined by formulaēaij = ai+2,j+2σj ,
ãij = αi+2,j+2σ

−1
j .

Condition 3.2. Suppose that either

1. a12 > 0,
∑2n

k=1 a1kak2 < 0 and n = 1 or all
eigenvalues of the matrix̄A are out of the unit cir-
cle or

2. α12 > 0,
∑2n

k=1 α1kαk2 < 0 andn = 1 or all
eigenvalues of the matrix̃A are out of the unit cir-
cle.

Theorem 3.1. Let the considered system satisfy the
conditions 3.1 and 3.2. Then there exist such positive
valuesµ0 andθ that for all µ ∈ [0, µ0], there exists a
chaotic invariant setKµ,θ of the mappingSµ,θ .

4 Lienard equation with a long period right hand
side.

Consider an s.d.f. mechanical system, described by
the equation

ẍ + p(x)ẋ + q(x) = f(t, T ), x > 0, (4.1)

providedp, q ∈ C2([0,+∞) → [0, +∞)). We sup-
pose thatf(t, T ) = f0(t/T ) is a C2 – smooth peri-
odic function of the periodT , which is supposed to be
a big parameter. Assume that a basic functionf0(t)
has exactly two zerost = 0 and t = τ1 over the pe-
riod [0, 1) and, moreover,f ′0(0) > 0, f ′0(τ1) < 0. Let
Mf = max |f(t)|. Suppose, there is suchxm > 0, that
q(xm) = Mf and

p(x) > 0, q′(x) > p2(x)/4 ∀x ∈ [0, xm].
(4.2)

Assume that the elastic impact conditions take place.

1. If x(t0) = 0 thenẋ(t0 + 0) = −ẋ(t0 − 0).



2. If x(t0) = ẋ(t0 − 0) = 0 and there exists such
t1 > t0 that f(t) 6 0 for all t ∈ [t0, t1], then
x(t) ≡ 0 for all t ∈ [t0, t1].

Consider the shift mapping

S(x0, y0) = (x(T + 0, 0, x0, y0), ẋ(T + 0, 0, x0, y0)).

Theorem 5.1.Let the coefficients of the equation (4.1)
satisfy the conditions (4.2) and the mentioned assump-
tions on the right hand sidef . Then there exists such
T̄ > 0 that for all T > T̄ there is a chaotic invariant
set of the shift mappingS.
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