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Abstract
For a network of interconnected Lurie systems with
Lipschitz nonlinearities an adaptive leader-follower
synchronization problem by output feedback is con-
sidered. The structure of decentralized controller
and adaptation algorithm is proposed based on speed-
gradient method. Sufficient conditions of synchroniza-
tion are established. The main contribution of the paper
is adaptive controller design and analysis of synchro-
nization in network with nonidentical nodes under con-
ditions of incomplete measurements, incomplete con-
trol and uncertainty.
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1 Introduction
An enormous interest is observed recently in control

of networks. The area is both relatively new and prac-
tically important since many physical systems can be
considered as interconnected systems, arrays or net-
works. The list of such systems includes telecommuni-
cation networks, molecular ensembles, biological sys-
tems, trophic chains, embedded systems, vehicle or
robots formations etc. Development of such systems
is inspired by onrush of information and communica-
tion technologies, including wireless communications
and wireless sensors. An interest is growing in mod-
eling and control of biological, biochemical and social
networks. However, coordinating controller design is
getting more and more difficult due to complexity of
spatially distributed networks. One of the most hard
obstacles are restrictions caused by limited information
exchange between subsystems. Though decentralized
control problems are well studied [Siljak, 1990; Frad-
kov, 1990; Druzhinina and Fradkov, 1999], new set-
tings arise creating more and more complex problems,
e.g. control via communication channels of limited ca-
pacity. New problems require simultaneous consider-

ation of control, communication and computing issues
as well as application of physics (statistical mechanics)
approaches.
Despite a great interest in control of network, only

a restricted class of them are currently solved. E.g.
in existing papers mainly linear models of subsystems
are considered [Matveev and Savkin, 2009]. Besides
in the literature on stabilization and synchronization
availability of the whole state vector for measurement
as well as appearance of control in all equations for
all nodes is assumed [Lu and Chen, 2005; Yao, Hill,
Guan and Wang, 2006; Zhou, Lu and Lu, 2006; Zhong,
Dimirovski and Zhao, 2007].
In this paper we consider a network of nonidentical

systems in Lurie form i.e. system models can be split
into linear and nonlinear parts. Linearity of intercon-
nections is not assumed i.e. links between subsystems
can also be nonlinear. In the contrary to known works
on adaptive synchronization of networks, see [Zhou,
Lu and Lu, 2006; Zhong, Dimirovski and Zhao, 2007],
only some output function is available and control ap-
pears only in a part of the system equations. It is also
assumed that some plant parameters are unknown. The
leading subsystem is assumed to be isolated and the
control objective is to approach the trajectory of the
leading subsystems by all other ones under conditions
of uncertainty. All nonlinear functions as well as inter-
connection functions are assumed to be Lipschitz con-
tinuous.
To solve the posed problem the results of [Fradkov,

1990; Fradkov, Miroshnik and Nikiforov, 1999] and
Yakubovich-Kalman lemma [Yakubovich, 1962] are
employed. Adaptation algorithm is designed by the
speed-gradient method. It is shown that the control goal
is achieved under conditions of leader passivity and
matching conditions, if the interconnection strengths
satisfy some inequalities.
In paper [Junussov and Fradkov, 2009] case of iden-

tical nodes are studied. Synchronization in networks
consisting of nonidenical nodes with other types of in-
ternal nonlinearity are studied in [Fradkov, Junussov



and Ortega 2009].
The obtained results are illustrated by example: syn-

chronization of an array of Chua circuits. The theoreti-
cal conclusions are confirmed by simulation results.

2 Problem statement
In this section the formal problem statement is given.
Consider a network of d interconnected nonidentical

subsystems Si, i = 1, . . . , d, d ∈ N. Let subsystem Si

be described by the following equation

ẋi = Aixi + Biui + ψ0(xi) +
d∑

j=1

αijϕij(xi − xj),

yi = CTxi, i = 1, . . . , d,
(1)

where xi ∈ Rn, ui ∈ R1, αij ∈ R1, yi ∈ Rl. Func-
tions ϕij(·), i = 1, . . . , d, j = 1, . . . , d, describe in-
terconnections between subsystems. We assume ϕii =
(0, 0, 0)T, i = 1, . . . , d. Let matrices Ai, Bi and func-
tions ϕij(·), i = 1, . . . , d, j = 1, . . . , d, depend on
the vector of unknown parameters ξ ∈ Ξ, where Ξ is
known set.
Introduce equations of an ith isolated subsystem ẋi =

Aixi + Biui + ψ0(xi), yi = CTxi, i = 1, . . . , d and
equations of the leading (master) system

ẋ = Ax + Bu + ψ0(x), y = CTx, (2)

where u(t) ∈ R1 is specified in advance. Let A,B,C
and ψ0(·) be known and not depending on the vector of
unknown parameters ξ ∈ Ξ.
Let the control goal be specified as convergence of all

subsystem trajectories to the trajectory of the leader:

lim
t→+∞

(xi(t)− x(t)) = 0, i = 1, . . . , d. (3)

The adaptive synchronization problem is to find a de-
centralized controller ui = Ui(yi, t) ensuring the goal
(3) for all values of unknown plant parameters.

3 Controller structure
Denote σi(t) = col(yi(t), u(t)). Let the main loop of

the adaptive system be specified as set of linear tunable
local control laws:

ui(t) = τi(t)Tσi(t), i = 1, . . . , d, (4)

where τi(t) ∈ Rl+1, i = 1, . . . , d are tunable parame-
ters. To design adaptation laws for τi(t), i = 1, . . . , d,
the speed-gradient (SG) method is used. Following
adaptation algorithm is derived

τ̇i = −gT(yi − y)Γiσi(t), i = 1, . . . , d, (5)

where Γi = ΓT
i > 0 – (l+1)×(l+1) matrices, g ∈ Rl.

In the next section condition of achievement of the
goal (synchronization) and boundedness of τi(t), i =
1, . . . , d, will be given.

4 Synchronization conditions
For analysis of the system dynamics the following as-

sumptions are made.
A1) The functions ψ0(·), ϕij(·),i = 1, . . . , d, j =

1, . . . , d are globally Lipschitz 1:

‖ψ0(x)− ψ0(x′)‖ ≤ L‖x− x′‖, L > 0,

‖ϕij(x)− ϕij(x′)‖ ≤ Lij‖x− x′‖, Lij > 0,

i = 1, . . . , d, j = 1, . . . , d.

A2)(matching conditions) For each ξ ∈ Ξ, i =
1, . . . , d there exist vectors νi = νi(ξ) ∈ Rl and num-
bers θi = θi(ξ) > 0 such that

A = Ai + Biν
T
i CT, B = θiBi. (6)

Consider real matrices H = HT > 0, g of size n ×
n, l×1 correspondingly and a number ρ > 0 such that:

HA∗ + AT
∗H < −ρH, HB = Cg, (7)

where A∗ = A + LIn

Let χ(s) = CT(sIn−A)−1B,χ∗(s) = CT(sIn−A−
LIn)−1B, z ∈ C. Denote by λmin(H), λmax(H) min-
imum and maximum eigenvalues of matrix H. Let’s in-
troduce notation ρ∗ for stability degree of the function’s
gTχ∗(s) denominator. Further, denote γ = ρ∗/(4dλ∗)
where λ∗ = λmax(H)/λmin(H) is condition number
of matrix H .

Theorem 1. Let for all ξ ∈ Ξ assumptions A1, A2
hold. Let B 6= 0, matrix A∗ = A + LIn be Hurwitz
and for some g ∈ Rl the following frequency domain
conditions hold:

Re gTχ∗(iω) > 0, lim
ω→∞

ω2 Re gTχ∗(iω) > 0 (8)

for all ω ∈ R1. Then there exist H = HT > 0, ρ > 0
such that relations (7) hold.
In addition, if the inequalities

d∑

j=1

|αijLij | < γ, i = 1, . . . , d (9)

hold then adaptive controller (4), (5) ensures achieve-
ment of the goal

lim
t→+∞

(xi(t)− x(t)) = 0, (10)

1Norms are Euclidean hereafter. Identity matrix of size n is de-
noted by In.



and boundedness of functions τi(t) on [0,∞) for all
solutions of the closed-loop system (1), (2), (4), (5).

Proof. We need two auxiliary results. The first one is
a version of Yakubovich-Kalman Lemma. It can be
found in [Fradkov, Miroshnik and Nikiforov, 1999].

Lemma 1. Let A,B, C be n × n, n × m, n × l real
matrices and u ∈ Rm, χ(s) =
CT(sIn − A)−1B, rankB = m. Then the following
statements are equivalent:
1) there exists matrix H = HT > 0 such that

HA + ATH < 0, HB = C; (11)

2) polinomial det(sIn − A) is Hurwitz and following
frequency domain conditions hold

Re uTχ(iω)u > 0, lim
ω→∞

ω2 Re uTχ(iω)u > 0

for all ω ∈ R1, u ∈ Rm, u 6= 0.

The second result is related to connective stability of
large scale interconnected systems. It is theorem 2.18
from [Fradkov, 1990] and can be can be derived from
[Fradkov, Miroshnik and Nikiforov, 1999] (Theorem
7.6).
Consider a system S consisting of d interconnected

subsystems Si, dynamics of each being described by
the following equation:

ẋi = Fi(xi, τi, t) + hi(x, τ, t), i = 1, . . . , d, (12)

where xi ∈ Rni – state vector, τi ∈ Rmi - vec-
tor of inputs (tunable parameters) of subsystem, x =
col(x1, . . . , xd) ∈ Rn, τ = col(τ1, . . . , τd) ∈ Rm - ag-
gregate state and input vectors of system S, n =

∑
ni,

m =
∑

mi. Vector-function Fi(·) describes local dy-
namics of subsystem Si, and vectors hi(·) describe in-
terconnection between subsystems.
Let Qi(xi, t) ≥ 0, i = 1, . . . , d be local goal functions

and let the control goal be:

lim
t→∞

Qi(xi, t) = 0, i = 1, . . . , d. (13)

For all i = 1, . . . , d we assume existence of smooth
vector functions x∗i (t) such that Qi(x∗i (t), t) ≡ 0,
i.e. x∗i = argminxi

Qi(xi, t). Decentralized speed-
gradient algorithm is introduced as follows:

τ̇i = −Γi∇τiωi(xi, τi, t), i = 1, . . . , d, (14)

where

ωi(xi, τi, t) =
∂Qi

∂t
+∇xiQi(xi, t)TFi(xi, τi, t),

Γi = ΓT
i > 0, mi ×mi - matrix.

Lemma 2. Suppose the following assumptions hold
for the system S:

1. Functions Fi(·) are continuous in xi, t, continu-
ously differentiable in τi and locally bounded in
t > 0; functions Qi(xi, t) are uniformly contin-
ious in second argument for all xi in bounded set,
functions ωi(xi, τi, t) are convex in τi; there exist
constant vectors τ∗i ∈ Rmi and scalar monotoni-
cally increasing functions κi(Qi), ρi(Qi) such that
κi(0) = ρi(0) = 0, limQi→+∞ κi(Qi) = +∞

ωi(xi, τ
∗
i , t) ≤ −ρi(Qi(xi, t)), (15)

and Qi(xi, t) ≥ κi(‖xi − x∗i (t)‖).
2. functions hi(x, τ, t) are continuous and satisfy the

following inequalities

|∇xi
Qi(xi, t)Thi(x, τ, t)| ≤

d∑

j=1

µijρj(xj , t),

(16)
where matrix M − I is Hurwitz, M = {µij},
µij > 0, I is identity matrix.

Then system (12),(14) is globally asymptotically stable
in variables xi − x∗i (t), all trajectories are bounded on
t ∈ [0,+∞) and satisfy (13).

Denote τ∗i = col(νi, θi). Following Lyapunov func-
tion is used in the proof of Lemma 2:

V (x, τ, t) =
d∑

i=1

βiVi,

where

Vi(xi, τi, t) = Qi(xi, t) +
1
2
(τi − τ∗i )TΓ−1

i (τi − τ∗i ).

The following goal function is suitable for prove of
Theorem 1:

Q(zi) =
1
2

zT
i Hzi, H = HT > 0,

where zi = xi − x. Introduce auxiliary error subsys-
tems:

żi =Aixi + Biui + ψ0(xi) +
d∑

j=1

αijϕij(xi − xj)−

(Ax + Bu + ψ0(x)) ,

ỹi =CTzi, i = 1, . . . , d.
(17)



Let’s evaluate of the derivative of Q(zi) along trajec-
tories of isolated subsystems:

ωi(xi, x, τi) = zT
i H[Aixi + Biτ

T
i (t)ỹi + ψ0(xi)−

Ax−Bu− ψ0(x)].
(18)

By taking τi = τ∗i for i = 1, . . . , d (see (6)) we obtain

ωi(xi, x, τ∗i ) = zT
i H[Aixi + Bi(νiC

Txi + θiu)+
ψ0(xi)−Ax−Bu− ψ0(x)] =
zT
i H[Azi + (ψ0(xi)− ψ0(x))].

Applying assumption A1 we obtain

ωi(zi, x, τ∗i ) ≤ zT
i H(A + LIn)zi.

Let’s apply Lemma 1 with A∗ instead of A and Cg
instead of C :

ωi(xi, x, τ∗i ) ≤ 1
2
zT
i (HA∗ + AT

∗H)zi.

Note that relation HB = Cg is used for derivation of
adaptive algorithm (5).
By taking ρi(Q) = ρ · Q we ensure that (15) holds

for i = 1, . . . , d. Other conditions from the first part of
Theorem 2 hold, since the right hand side of the system
(17) and function Qi(zi) are continuous in zi functions
not depending in t for any i = 1, . . . , d. Convexity
condition is valid since the right hand side of (18) is
linear in τi.
The interconnection condition (16) in our case reads:

|∇ziQ(zi)T

d∑

j=1

αijϕij(zi − zj)| ≤
d∑

j=1

µijρ ·Q(zj),

(19)
where i = 1, . . . , d, and matrix M − I should be Hur-
witz (M = {µij}, µij > 0). It can be derived that for
i = 1, . . . , d inequality (19) holds if following inequal-
ity holds:

1
2




d∑

j=1

|αijLij |






d∑

j=1

3‖zi‖2 + ‖zj‖2

 ≤

ρ

2λ∗

d∑

j=1

µij‖zj‖2.

Without loss of generality we can take ρ = ρ∗. De-

note ζ = 2dγ
(∑d

j=1 |αijLij |
)−1

. Following choice
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Figure 1. Nyquist plot of χ∗(iω), ω ∈ R1.

Figure 2. Connections graph

of M ensures correctness of last inequality and Hurwitz
property of M − I :

µij =





1
2ζ

(3d + 1), i = j

1
2ζ

, i 6= j

5 Example. Network of Chua circuits
Chua circuit is a well known example of simple

nonlinear system possessing complex chaotic behavior
[Wu and Chua, 1995]. Its trajectories are unstable at
some values of parameters and it is represented in the
Lurie form. Let us apply our results to synchronization
with leading subsystem in the network of five intercon-
nected nonidentical Chua systems.
Let m0 = −8/7, m1 = −5/7, p = 2, q = 4, b = 1

and g = 1.

Let the leading subsystem be described by the equa-
tion

ẋ = Ax + Bu + ψ0(x), y = CTx,

where x ∈ R3 is state vector of the system, y ∈ R1

is output available for measurement, u is scalar con-
trol variable, ψ0(x) = col(pv(x1), 0, 0), where v(x) =
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Figure 3. (A): Phase portrait of leading subsystem, (B): ‖zi‖

−0.5(m0 −m1)(|x + 1| − |x− 1| − 2x). Further, let

A =



−1 0 0
1 −1 1
0 −q 0


 ,

B = col(b, 0, 0), C = col(1, 0, 0). Apparently Lips-
chitz constant L = p|m0−m1

2 |.
Matrix A∗ is Hurwitz. Transfer function χ∗(s) =

CT(sI−A−LIn)−1BL ≈ (s2 +0.14s+3.76)/(s3 +
0.71s2 + 3.84s + 2.15). It is seen from the Nyquist
plot of χ(iω), ∀ω ∈ R1, presented on Fig. 1, that first
frequency domain inequality of (8) holds. The second
frequency domain inequality of (8) also holds since rel-
ative degree of χ(s) is equal to one and highest coeffi-
cient of its numerator is positive.
Let subsystem Si for i = 1, . . . , 5 be described by (1)

with ui, αij ∈ R1. By choosing (ν1, ν2, ν3, ν4, ν5) =
(2, 7, 1, 8, 2), θi = 1/i, i = 1, . . . , 5 and using (6)
we obtain matrices Ai, Bi for i = 1, . . . , 5, which
are not equal, i.e. nodes are nonidentical. Denote
ϕij = ϕij(xi − xj), i = 1, . . . , 5, j = 1, . . . , 5.
Let ϕ14, ϕ25, ϕ32, ϕ42, ϕ45, ϕ52, ϕ53, be equal to
(0, 0, 0)T. Further, let

ϕ12 = (sin(x11 − x21), 0, 0)T,

ϕ13 = (0, x12 − x32, 0)T,

ϕ15 = (0, 0, sin(x13 − x53))T,

ϕ21 = (x21 − x11, 0, x23 − x13)T,

ϕ23 = (0, sin(x22 − x32), 0)T,

ϕ24 = (0, x22 − x42, 0)T,

ϕ31 = (sin(x31 − x11), 0, 0)T,

ϕ34 = (sin(x31 − x41), 0, 0)T,

ϕ35 = (x31 − x51, x32 − x52, x33 − x53)T,

ϕ41 = (0, sin(x42 − x12), 0)T,

ϕ43 = (sin(x41 − x31), 0, 0)T,

ϕ51 = (x51 − x11, 0, x53 − x13)T,

ϕ54 = (0, x52 − x42, 0)T.

Lipschitz constants of all ϕij are equal to 1. Connec-
tions graph is shown on Fig. 2.
It follows from Theorem 1 that decentralized adaptive

control (4) provides synchronization goal (3) if for all
i = 1, . . . , 5 inequality

∑5
j=1 |αij | < γ holds, i.e. if

interconnections are sufficiently weak.
Consider following control of leading subsystem u =

1
b [(−(1 + m0)p + 1)x1 + px2] . Let us put Γi =
I, i = 1, . . . , d, where I – identity matrix, and

x1(0) = 0.5, x2(0) = 0, x3(0) = 0,

x1(0) = (7, 14, 0.4)T, x2(0) = (0, 4, 4)T

x3(0) = (1,−1, 4.5)T, x4(0) = (3,−4, 0.2)T

x5(0) = (2, 8, 15).

Denote by α 5 × 5 matrix with element αij lying in
the i-th row and the j-th column, i, j = 1, . . . , 5, and
let’s take

α =




0 0.0051 0.1395 0 0.1676
0.0662 0 0.0921 0.0065 0
0.2013 0 0 0.2271 0.1430
0.0907 0 0.0675 0 0
0.0663 0 0 0.2773 0




.

Let us choose adaptive control ui, i = 1, . . . , 5 as in (4)
and apply Theorem 1.
Phase portrait of the leading system and norms of er-

rors ‖zi‖, i = 1, . . . , 5 found by 40 sec. simulation are
shown on Fig. 3. Simulation results demonstrate rea-
sonable convergence (synchronization) between sub-
systems.

6 Conclusions
In contrast to a large number of previous results, we

obtained synchronization conditions for nonlinear dy-
namical networks with nonidentical nodes, incomplete



measurement, incomplete control, incomplete informa-
tion about system parameters and coupling. The de-
sign of the control algorithm providing synchroniza-
tion property is based upon speed-gradient method
[Fradkov, 1990; Fradkov, Miroshnik and Nikiforov,
1999], while derivation of synchronizability conditions
is based on Yakubovich-Kalman lemma [Yakubovich,
1962]. Note that g-monotonicity condition seems more
suitable for ensuring chaotic behaviour of the leading
subsystem, see [Junussov and Fradkov, 2009], [Frad-
kov, Junussov and Ortega 2009].

References
Druzhinina, M. V. and Fradkov A. L. (1999). Adap-

tive decentralized control of interconnected systems.
In Proc. 14th IFAC World Congress, Vol. L, pp. 175–
180.

Dzhunusov, I. A. and Fradkov, A. L. (2009). Adaptive
synchronization of a network of interconnected non-
linear Lur’e systems. Automation and Remote Con-
trol, Vol. 70, N. 7, pp. 1190-1205.

Fradkov, A. L. (1990). Adaptive Control in Complex
Systems. Moscow: Nauka, (In Russian).

Fradkov, A. L. (2003). Passification of nonsquare
linear systems and feedback Yakubovich-Kalman-
Popov Lemma. Europ. J. Contr., N. 6, pp. 573–582.

Fradkov, A. L., Junussov, I. A. and Ortega, R. (2009).
Decentralized adaptive synchronization in nonlin-
ear dynamical networks with nonidentical nodes. In
Proc. 2009 IEEE Multi-conf. on Systems and Control,
pp. 531–536.

Fradkov, A. L. and Markov, A. Yu. (1997). Adaptive
synchronization of chaotic systems based on speed
gradient method and passification. IEEE Trans. Circ.
and Syst. Vol. 44, N. 10, pp. 905–912.

Fradkov, A. L., Miroshnik, I. V. and Nikiforov V. O.
(1999). Nonlinear and adaptive control of complex
systems. Kluwer Academic Publishers, Dordrecht.

Lu, J. and Chen, G. (2005). A Time-Varying Complex
Dynamical Network Model and Its Controlled Syn-
chronization Criteria. IEEE Trans. Autom.Control,
Vol. 50, N. 6.

Matveev, A. S. and Savkin, A. V. (2009). Estima-
tion and Control over Communication Networks.
Birkhauser.

Siljak, D. D. (1990). Decentralized Control of Complex
Systems. Ser. Mathematics in Science and Engineer-
ing Boston, MA: Academic, Vol. 184.

Wu, C. W. and Chua, L. O. (1995). Synchronization in
an array of linearly coupled dynamical systems. IEEE
Trans. Circ. and Syst.-I., Vol. 42, N. 8, pp. 430–447.

Jakubovic, V. A. (1962) The solution of certain matrix
inequalities in automatic control theory. Soviet math-
ematics, Vol. 3. N. 2. pp. 620–623.

Yao, J., Hill, D. J., Guan, Z.-H. and Wang, H. O.
(2006). Synchronization of Complex Dynamical
Networks with Switching Topology via Adaptive
Control. In Proc. 45th IEEE Conf. Dec. Control,

pp. 2819–2824.
Zhong, W.-S., Dimirovski, G. M. and Zhao, J. (2007).

Decentralized synchronization of an uncertain com-
plex dynamical network, In Proc. 2007 American
Control Conf., pp. 1437–1442.

Zhou, J., Lu, J. and Lu, J. (2006). Adaptive synchro-
nization of an uncertain complex dynamical network.
IEEE Trans. Autom. Control, Vol. 51, N. 4, pp. 652–
656.


