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Abstract
The state estimation problem for a dynamic system

described by the Markov chain model with discrete
time is considered. It is assumed that a matrix of the
transition probabilities is incompletely known. Pro-
posed approach is based on the confidence estimates.
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1 Introduction
Markov chain models [Markov, 1906] are widely used

to explain the dynamics of state changes for different
systems. Often they are used as a mathematical model
for some random physical process. If parameters of
the chain are known, quantitative predictions can be
made. Markovian systems appear extensively in ther-
modynamics and statistical mechanics, whenever prob-
abilities are used to represent unknown or unmodelled
details of the system, if it can be assumed that the dy-
namics are time–invariant, and that no relevant history
need be considered which is not already included in the
state description.
Chemistry is often a place where Markov chains and

continuous–time Markov processes are especially use-
ful because these simple physical systems tend to sat-
isfy the Markov property quite well. The classical
model of enzyme activity, Michaelis–Menten kinetics,
can be viewed as a Markov chain, where at each time
step the reaction proceeds in some direction. An al-
gorithm based on a Markov chain was also used to fo-
cus the fragment–based growth of chemicals towards
a desired class of compounds such as drugs or natural
products.
Markov chains are used in finance and economics to

model a variety of different phenomena, including as-
set prices, market crashes and credit portfolio dynamics
[Jones, 2005; Thyagarajan, Saiful, 2005].

If the transition probability matrix of Markov chain is
known then dynamics of the system states probabilities
is completely described by a system of difference equa-
tions. But in most cases the transition probabilities are
unknown and estimated during the system evolution.

2 Problem Statement
Let us consider a system withk states, the probabil-

ity that the system is ini-th state at momentt denote
by xi(t), i = 1, . . . , k. Thus the following conditions
hold:

0 ≤ xi(t) ≤ 1, x1(t) + . . . + xk(t) = 1. (1)

Let the dynamics of the system states probabilities is
described by the discrete Markov chain model:

xj(t + 1) =
k∑

i=1

pijxi(t), t = 0, 1, . . . , T, (2)

wherepij is the probability of going from statei to state
j on one step.
We impose a simple Markov structure on the transition

probabilities and restrict our attention to first–order sta-
tionary Markov processes for simplicity.
Let denote byx(t) a vector of states probabilities

x(t) = {x1(t), . . . , xk(t)}>, byP a matrix of the tran-
sition probabilitiesP = {pij} and rewrite equation (2)
in the vector form:

x(t + 1) = P>x(t), t = 0, 1, . . . , T. (3)

The problem is to estimatex(T ) if the transition prob-
ability matrixP is incompletely known.
It is assumed that we have information about the num-

ber of transitions fromi-th state toj-th on t step,
t = 1, . . . ,m. Different approaches to the estimation
of the transition probabilities matrix are investigated.



3 Estimation of Transition Probabilities Matrix
For the estimation of the probabilitypij one usually

use the statistical data about transitions from one state
to another. Letnij denote the number of individuals
who were in statei in period t − 1 and are in statej
in periodt. We can estimate the probabilitypij of an
individual being in statej in period t given that they
were in statei in periodt− 1.
The probability of transition from any given statei

is approximated by a proportion of individuals that
started in statei and ended in statej as a proportion
of all individuals in that started in statei:

wij =
nij∑

j

nij
. (4)

Using the methods described above, it is possible to
estimate a transition matrix using count data.
Anderson and Goodman [Anderson, Goodman, 1957]

showed that the estimatorwij given by equation (4) is
a maximum-likelihood estimator that is consistent but
biased, with the bias tending toward zero as the sample
size increases.
Suppose that instead of observing the actual count of

transitions from the different states, we only observe
the aggregate proportionsyi(t), which represent the
proportion of observations with the statei. The aggre-
gate proportionsyi(t) estimate the system state proba-
bilities:

yi(t) ≈ Nxi(t), i = 1, . . . , N, t = 1, . . . , T,

whereN is a number of all individuals.
If the time series of observationsT is sufficiently long,

it is possible to estimate a transition matrixP from ag-
gregate data using quadratic programming methods.
Let consider the relation:

yj(t) =
k∑

i=1

yi(t− 1)pij + uj(t− 1), (5)

whereyj(t) is observed date,pij are unknown elements
of the transition probability matrix,uj(t) are deviations
which should to be minimized.
The equation (5) may be rewritten in the vector form:

Y = GP + U,

here

U = {u1(1), . . . , u1(T ), u2(1), . . . , uk(T )}> ∈ RkT ,

Y = {y1(1), . . . , y1(T ), y2(1), . . . , yk(T )}> ∈ RkT ,

G is kT × kT matrix,

Lee, Judge and Zellner [Lee, Judge, Zellner, 1970]
suggest minimizing the sum of squared errors in equa-
tion (5) subject to linear constraints on the transition
probabilitiespij :

(Y −GP )>(Y −GP ) → min,

pij ≥ 0,
∑

j

pij = 1. (6)

This approach was continued by Kalbfleisch, Lawless
and Vollmer [Kalbfleisch, Lawless, 1984; Kalbfleisch,
Lawless, Vollmer, 1984].
MacRae [MacRae, 1977] noted that the variance of

the error termU depends on the magnitude ofyt−1,
so using ordinary least squares estimation techniques is
not efficient estimates. She produced a more efficient
estimator using an iterative generalized least squares
method for calculating the matrix of transition proba-
bilities P . The first step in the procedure is to estimate
the transition matrix, and then use this to calculate a
consistent estimate of the conditional covariance ma-
trix. The estimated covariance matrix is used to ob-
tain a subsequent estimate of the transition probabili-
ties, and the procedure is repeated. The convergence
of the procedure is investigated in the paper [MacRae,
1977].
Jones [Jones, 2005] studied the maximum-likelihood

estimates for the transition probabilities matrix for use
in credit risk modeling with a decades-old methodol-
ogy that uses aggregate proportions data.

4 Confidence Approach
Let us denote byξ(t) a random vector described sys-

tem state. It equals toi-th basic vectors if the system is
in thei-th state. Thus

xi(t) = Pr{ξ(t) = ei}, i = 1, . . . , k, (7)

heree1, . . . , ek are the base vectors inRk.
Denote a random loss function onm-th step by

η(m,T ) =
T∑

t=m

[l(t)>ξ(t)],

wherel(t) is vector function[0,∞) 7→ Rk.
In the loan portfolio model the vector function equals

a loss (profitability) of the portfolio on the time interval
[0;T ]. In this casel(t) has the forml(t) = r(t)l, where
l = {l1, . . . , lk}>, li is a loss of loans ini-th group,
r(t) is a discount factor.
The purpose is to estimate a probability that the loss

function exceed a given levelγ

dγ = Pr{η(m,T ) > γ}. (8)



If the transitions probability matrixP is known then
using equation (3) we get the distribution of the random
valueη(m,T ) which is completely defined by vector of
the states probabilityx(m), thusdγ = d(x(m), P, γ).
Another approach is to estimate a quantile for a given

probabilityβ:

qβ = max{q : Pr{η(T ) > q} ≤ β}. (9)

The quantile and probability functions are closely
connected and their properties are studied by Precopa
[Precopa, 1995], Kibzun and Kan [Kibzun, Kan, 1996].
In many cases a consideration of the estimates of the

random value reduces to the estimation of the fist and
second statistical moments of a loss function. In our
problemE(η(m,T )) andσ2(η(m,T )) are linear and
quadric functions functions ofx(m) respectively in
case of a known matrixP of the transition probabili-
ties.
But in the consideration the transition probabilities

matrix P is incompletely known and should to be es-
timated. The state estimation problem for multistage
systems with gaussian perturbation and uncertain ma-
trix was considered by Anan’ev [Anan’ev, 2010].
One of the general approach to quantile and probabil-

ity estimation problems is to reduce the quantile opti-
mization [Kibzun, Kan, 1996] to the optimal choice of
the confidence regions for unknown parameters. Let us
use this general approach to the estimation problem (8).
For simplicity of the consideration it is proposed fur-

ther that the loss function has a form

η(T ) = l>ξ(T ) = l1ξ1(T ) + . . . + lkξk(T ).

5 Method of Probability Estimation
The first step is to estimate the elements of the tran-

sition probability matrixP . Denote the confidence re-
gion for {pij , i = 1, . . . , k, j 6= i, j = 1, . . . , k} on
m-th step byZα ⊂ RK , K = k(k − 1).
Thus pij are the transition probabilities then condi-

tions (6) hold andZα ⊂ Z+ ⊂ RK , where

Z+ = {pij : 0 ≤ pij ≤ 1,
∑
j 6=i

pij ≤ 1} ⊂ RK .

Estimation forpii follows from the equalities

pi1 + . . . + pik = 1, i = 1, . . . , k. (10)

In the considered model the differencespij − wij is
approximately normal distributed and we may use the
confidence setZα defined by joint restrictions:

Zα = {pij ∈ Z+ : (pij − wij)>G(pij − wij) ≤ b(α)}
(11)

The next step is to solve the state estimation prob-
lem for a multistage deterministic system with uncer-
tain matrix:

x(t + 1) = P>x(t), t = m, . . . , T,

x(m) = x∗, P ⊂ Z.
(12)

and to find an information set

X(t, Z) = {x ∈ Rk
+ : x = (P>)T−mx∗, P ∈ Z}.

(13)
We may construct information sets for system (12) us-
ing approaches proposed by Kurzanski, Tanaka and
Matasov [Kurzanski, Tanaka, 1989; Matasov, 1999].
The third step is to estimate the probability

dγ = Pr{η(T ) = l>ξ(T ) > γ}

for a given levelγ, where a distribution of the random
vectorξ(T ) is defined by a vector of states probabilities
x(T ) = {x1(t), . . . , xk(T )}, which is incompletely
known. This vector is given by its confidence region
X(T,Zα),

P{x(T ) ∈ X(T,Zα)} = α, (14)

where the setX(T,Zα) is defined by (13).
The estimation of the probabilitydγ is reduced to es-

timation of the probability

bγ(z) = Pr{l>ξ(x(T, z)) > γ}, (15)

wherex(T, z) ∈ X(T,Z).
Obtaining problem is a probability optimization prob-

lem with uncertainty which properties and methods of
solving are studied in [Timofeeva, 2007; Timofeeva,
2010].
Let us denote lower and upper bounds of the probabil-

ity bγ(z) by b
(1)
α andb

(2)
α :

b(1)
α = inf

z∈Zα

bγ(z), b(2)
α = sup

z∈Zα

bγ(z). (16)

The complete probability formula fordγ has the form:

dγ = Pr{η(T, z) > γ | z ∈ Zα} · Pr{z ∈ Zα}+

+Pr{η(T, z) > γ | z /∈ Zα} · Pr{z /∈ Zα},
(17)

herePr{A | B} is a conditional probability ofA in
condition ofB. Using equalities (14) and (16) we get
from (17) the estimation for probabilitydγ

αb(1)
α ≤ dγ ≤ αb(2)

α + (1− α). (18)

Thus the method of solving the probability estimation
problem consists of following stages:



1. take confidence probabilityα close to 1, (e.g.α =
0.99, α = 0.995) and calculate a confidence set
Zα for elements{pij , j 6= i} of the matrixP ;

2. describe the information setX(T,Zα) for the mul-
tistage system (12);

3. calculate lower and upper bounds (16) of the prob-
ability bγ(z), z ∈ Zα and estimate the probability
dγ using inequalities (18).

6 Application to Credit Portfolio Dynamics
In particular the Markov process describes the credit

portfolio dynamics [Jones, 2005; Thyagarajan, Saiful,
2005]. A change of shares of credits portfolio is de-
scribed by Markov chain with discrete time.
In this case the credit state is determined on an ac-

cessory to this or that group of credits depending on
presence of indebtedness and its terms. We use a model
with discrete time and fix the system state through iden-
tical time intervals - once a month [Timofeev, 2011].
Usually the matrix of the transitive probabilities is in-

completely known therefore its values are constantly
specified according to the vintage analysis of a portfo-
lio.
We considered a scheme with 6 groups of loans: a

group of loans without delay, a group of loans with less
than 31 days delay, a group of loans with 31 – 65 days
delay, ect. and a group of problematic loans. Tran-
sition probabilities were estimated by using the confi-
dence approach.
Confidence regions (11) forpij were constructed on

the base of statistical data about transitions in relatively
small portfolio of homogeneous loans (N = 1000). We
estimated the probabilitydγ(T ) that a share of prob-
lematic loansy6(T ) exceed a critical levelγ.
Estimations fordγ(T ) were obtained using formula

(18) for T = 1, . . . , 12 months. Appropriate results
were obtained only forT = 1, . . . , 4. In the case of
T > 6 months the confidence interval[d−γ (T ); d+

γ (T )]
was too large.

7 Conclusion
It is proposed in the paper that a system dynamics is

described by the discrete Markov chain. The probabil-
ity of an exceeding a given level of a linear loss func-
tion is estimated by using confidence sets for the tran-
sition probabilities.Obtained results apply to modeling
of credit portfolio dynamics and to estimate the proba-
bility of future losses.
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