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Abstract
In this paper, we propose a variational method for

restoring images corrupted by multiplicative noise.
Computationally, we employ the alternating minimiza-
tion method to solve our minimization problem. We
also study the existence and uniqueness of the pro-
posed problem. Finally, experimental results are pro-
vided to demonstrate the superiority of our proposed hy-
brid model and algorithm for image denoising in com-
parison with state-of-the-art methods.
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1 Introduction
Image denoising is an important topic in digital image

processing. In this field, the main task is to reconstruct
a good approximation of original u from observed im-
age f and to preserve local image features for accurate
and effective subsequent analysis [Pham and Kopylov,
2015].

Images are corrupted by noise due to several causes in-
cluding quality of transceivers, influence of light sources
or environment condition [Pham and Kopylov, 2018;
Pham et al., 2018]. There are many types of noise such
as Gaussian noise, Poisson noise, impulse noise, mixed
noise, gamma noise etc. In this paper, we focus on the
multiplicative Gamma noise removal problem.

∗Corresponding author
The multiplicative noise, also known as speckle noise,

usually appears in imaging techniques such as the
Synthetic-aperture radar (SAR), laser, ultrasound, mi-
croscope, magnetic resonance, optical coherence tomog-
raphy and so on [Steidl and Teuber, 2010; Jiang et al.,
2014; Huang, Ng, and Wen 2009; Jin and Yang , 2011;
Bioucas and Figueiredo, 2010; Granwehr, 2007; Chyba
and Marriott, 2012; Granichin, Erofeeva, and Senin,
2018]. The noise signals are produced when the wave
returns from a rough surface. If there are too many in-
formation points on the scale of the optical wavelength,
the waves will affect each others and cause fraud infor-
mation for the capturing devices [Vassa et al., 2008].

Assuming that the original image u = u(x), x ∈ Ω ⊂
R2 is affected by the multiplicative noise η, the multi-
plicative noise model is defined as follows:

f = uη,

where f is a corrupted image, and multiplicative Gamma
noise η follows the Gamma distribution with its proba-
bility density function given by [Aubert and Aujol, 2008;
Rudin, Lions, and Osher, 2003]:

p(η) =
LLηL−1

Γ (L)
ηL−1e−Lη, for η ≥ 0,

L is the positive parameter and Γ (.) is the Gamma func-
tion, the mean value of the noise η is 1 and the variance
is 1
L .
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Many approaches have been considered for the multi-
plicative noise removal [Liu and Fan, 2016; Ullah et al.,
2017; Zhao, Wang, and Ng, 2014; Dong et al., 2017].
Among of them, Total variation (TV) based approaches
have achieved great success [Li, Wang, and Zhao, 2016;
Li, Lou , and Zeng, 2016; Zhou et al., 2015; Yao et al.,
2019; Bai, 2019; Aubert and Aujol, 2008; Dong and
Zeng, 2013]. In [Aubert and Aujol, 2008], the authors
proposed a multiplicative noise removal model as fol-
lows (M1 model):

min
u∈S(Ω)

(
λ

∫
Ω

|∇u|dx

+

∫
Ω

(
log u+

f

u

)
dx

)
,

(1)

where u is the original image, f is the corrupted image,
x ∈ Ω, S(Ω) = {u ∈ BV (Ω), u > 0} is the image
space, BV (Ω) is the space of functions of bounded vari-
ation, λ is a positive parameter, the operator |∇u| is de-
fined later in (5).

However,the model (1) is non-convex, and it is diffi-
cult to find its global minimal solution. To avoid the
drawback, authors in [Dong and Zeng, 2013] proposed a
convex variational model by adding a quadratic penalty
term as follows (M2 model) :

min
u∈S(Ω)

(
λ

∫
Ω

|∇u|dx+

∫
Ω

(
log u+

f

u

)
dx

+ α

∫
Ω

(

√
u

f
− 1)2

) (2)

where u is the original image, f is the corrupted image,
x ∈ Ω, S(Ω) = {u ∈ BV (Ω), u > 0} is the image
space, λ and α are positive parameters.

The mentioned models allow us to get the good image
denoising results with significantly sharp edges. How-
ever, the TV based models tend to create piecewise-
constant in restored image. It leads to undesirable prob-
lem usually called the staircase effect. To overcome the
staircase effect, higher-order regularization have been
considered [Liu et al., 2013; Lefkimmiatis, Bourquard,
and Unser, 2012; Chen et al., 2009; Chen and Wunderli,
2002; Lysaker and Tai, 2006; Liu, Yao, and Ke 2007; Li
et al., 2007; Papafitsoros and Schonlieb, 2014]. There-
fore, authors in [Jiang et al., 2014] proposed an adaptive
model of (1) by combinating the TV norm with a second-
order regularizer as follows (M3 model):

min
u∈S(Ω)

(
λ

∫
Ω

|∇u|dx+γ

∫
Ω

|∇2u|dx

+

∫
Ω

(
log u+

f

u

)
dx

) (3)

where x ∈ Ω, S(Ω) = {u ∈ BV (Ω)∩BV 2(Ω), u > 0}
is the image space, λ and γ are positive parameters, the
operator |∇2u| is defined later in (6).

Inspired of the above studies, we propose a hybrid total
variational minimization model to solve the multiplica-
tive noise removal problem. We modify the model (2) by
adding a high-order functional into the objective func-
tion and investigate an adaptive model as follows:

min
u∈S(Ω)

(
λ

∫
Ω

|∇u|dx+ γ

∫
Ω

|∇2u|dx

+

∫
Ω

(
log u+

f

u

)
dx+ α

∫
Ω

(

√
u

f
− 1)2

) (4)

where x ∈ Ω, S(Ω) = {u ∈ BV (Ω)∩BV 2(Ω), u > 0}
is the image space, λ and γ are positive parameters.

In this paper, our main contributions can be summa-
rized as follows. We propose the hybrid model com-
bining the advantages of the TV regularization and the
high-order TV model. It allows to avoid the staircase ef-
fect with edge-preserving image denoising. We study the
issues of existence and uniqueness of a minimizer for the
proposed model. Moreover, we employ the well-known
alternating minimization method to solve the minimiza-
tion problem in (4). Several numerical experiments are
given to show the performance of our model. In particu-
lar, a comparison with related approaches in terms of the
peak signal-to-noise ratio and structural similarity index
is provided as well.

The rest of the paper is organized as follows. In Sec-
tion (2), we study existence and uniqueness of solu-
tion for the proposed model and present the optimiza-
tion framework. Next, in Section (3), we show some
numerical results of our proposed method and we com-
pare them with the results obtained with other existing
and well-known methods. Finally, some conclusions are
drawn in Section (4).

2 The Proposed Model and Method
We can rewrite the optimization problem (4) as fol-

lows:

u∗ = arg min
u∈S(Ω)

E(u)

E(u) = min
u∈S(Ω)

(
λ

∫
Ω

|∇u|dx+ γ

∫
Ω

|∇2u|dx

+

∫
Ω

(
log u+

f

u

)
dx

+ α

∫
Ω

(

√
u

f
− 1)2

)
.

Definitions and notations of the spaces BV and BV 2

space can be found in [Chen et al., 2009; Li et al., 2007;
Chen and Wunderli, 2002; Lysaker and Tai, 2006; Liu,
Yao, and Ke 2007; Papafitsoros and Schonlieb, 2014;
Aubert and Kornprobst, 2006]. The discrete gradient∇u
and the second-order derivatives ∇2u of an image u for
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the pixel location (i, j) in u (i = 1..M ; j = 1..N) are
defined as follows:

∇1ui,j = ui+1,j − ui,j , ∇2ui,j = ui,j+1 − ui,j ,

∇ui,j = (∇1ui,j ,∇2ui,j),

|∇ui,j | =
√

(∇1ui,j)2 + (∇2ui,j)2, (5)

∇11ui,j = ui+1,j − 2ui,j + ui−1,j ,

∇22ui,j = ui,j+1 − 2ui,j + ui,j−1,

∇12ui,j = ui,j − ui,j−1 − ui−1,j + ui−1,j−1,

∇12ui,j = ∇21ui,j ,

∣∣∇2u
∣∣ = (6)√

(∇11ui,j)2 + (∇12ui,j)2 + (∇21ui,j)2 + (∇22ui,j)2.

Motivated by [Aubert and Aujol, 2008; Dong and
Zeng, 2013], we have the following theorem to show
the existence and uniqueness of the optimization solu-
tion to the problem (4). First, we show thatE(·) is a con-
vex functional. Second, we show that E(·) has a lower
bound. These two facts together imply the existence and
uniqueness of solution for the minimization problem (4).

Theorem 1. The optimization problem (4) has a solu-
tion. Moreover, if α ≥ 2

√
6

9 , the solution is unique.

Proof. Let u(k) be a bounded minimizing sequence. By
the compactness property in the space of bound varia-
tion BV (Ω) and BV 2(Ω), there exists u∗ ∈ BV (Ω) ∩
BV 2(Ω), such that u(k) converges weakly to u∗ ∈
BV (Ω) ∩ BV 2(Ω) and u(k) converges strongly to u∗

in L1(Ω). According to [Chen and Wunderli, 2002; Pa-
pafitsoros and Schonlieb, 2014; Li et al., 2007; Dong and
Zeng, 2013], we know that the total variation terms are
convex, and the fidelity term in (4) are strictly convex
when α ≥ 2

√
6

9 . Therefore, if α ≥ 2
√

6
9 , we obtain that

E(z) is strongly convex. According to Fatou’s lemma
[Feinberg, Kasyanov, and Zadoianchuk, 2014], we ob-
tain :

E(u) ≥ E(u∗).

Thus, u∗ is a minimizer of the optimization problem (4).

�
There are many methods which can be employed to ob-

tain the solution of the optimization problem (4), for in-
stance, the primal-dual algorithm, the split-Bregman al-
gorithm, alternating minimization method [Chambolle,
2004; Chan et al., 2011; Goldstein and Osher, 2008;
Pham et al., 2019]. In this article, we solve the optimiza-
tion problem (4) via the alternating direction algorithm

which is a variant of the classical augmented Lagrangian
multiplier method [Wu and Tai, 2010].

Following the popular alternating minimization
method [Chan et al., 2011; Wang et al., 2008; Tai Hahn,
and Chung, 2011], we introduce three new variables
(d, g, z) and rewrite (4) in the constrained discrete
optimization problem as follows:

min
z,d,g

(
λ‖d‖1 + γ‖g‖1 + 〈1, log z +

f

z
〉

+ α(

√
z

f
− 1)2

)
s.t. d = ∇u, g = ∇2u, z = u.

(7)

The augmented Lagrangian functional for the con-
strained optimization problem (7) is defined as:

min
z,d,g,ρ1,ρ2,ρ3

(
λ‖d‖1 + γ‖g‖1 + 〈1, log z +

f

z
〉

+ α(

√
z

f
− 1)2 − 〈ρ1, d−∇u〉+

η1

2
‖d−∇u‖22

− 〈ρ2, g −∇2u〉+
η2

2
‖g −∇2u‖22

− 〈ρ3, z − u〉+
η3

2
‖z − u‖22

)
,

(8)

where η1, η2, η3 - positive parameters; ρ1, ρ2, ρ3 - with
Lagrangian multipliers.

The minimization method to solve the optimization
problem (8) can be expressed as follows:

u(k+1) = arg min
u

(
− 〈ρ1, d−∇u〉+

η1

2
‖d−∇u‖22

− 〈ρ2, g −∇2u〉+
η2

2
‖g −∇2u‖22

− 〈ρ3, z − u〉+
η3

2
‖z − u‖22

)
,

d(k+1) = arg min
d

(
λ‖d‖1 − 〈ρ1, d−∇u〉

+
η1

2
‖d−∇u‖22

)
,

g(k+1) = arg min
g

(
γ‖g‖1 − 〈ρ(k)

2 , g −∇2u(k+1)〉

+
η2

2
‖g −∇2u(k+1)‖22

)
,

z(k+1) = arg min
z

(
〈1, log z +

f

z
〉+ α(

√
z

f
− 1)2

− 〈ρ(k)
3 , z − u(k+1)〉+

η3

2
‖z − u(k+1)‖22

)
,

with update for ρ(k+1)
1 , ρ

(k+1)
2 , ρ

(k+1)
3 :

ρ
(k+1)
1 = ρ

(k)
1 + η1(∇u(k+1) − d(k+1)),

ρ
(k+1)
2 = ρ

(k)
2 + η2(∇2u(k+1) − g(k+1)),

ρ
(k+1)
3 = ρ

(k)
3 + η3(u

(k+1) − z(k+1)).

(9)



CYBERNETICS AND PHYSICS, VOL. 10, NO. 1, 2021 43

The u subproblem is given by:

u(k+1) = arg min
u

(
− 〈ρ1, d−∇u〉+

η1

2
‖d−∇u‖22

− 〈ρ2, g −∇2u〉+
η2

2
‖g −∇2u‖22

− 〈ρ3, z − u〉+
η3

2
‖z − u‖22

)
=
η1

2
‖d−∇u(k+1) − ρ

(k)
1

η1
‖22

+
η2

2
‖g −∇2u(k+1) − ρ

(k)
2

η2
‖22 +

η3

2
‖z − u− ρ

(k)
3

η3
‖22

Thus, we get:

η1∇T (∇u+
ρ

(k)
1

η1
− d(k)) + η2∇2T (∇2u+

ρ
(k)
2

η2
− g(k))

+ η3(u+
ρ

(k)
3

η3
− z(k)) = 0.

We can rewrite the equation as follows:(
η1∇T∇+ η2∇2T∇2 + η3

)
u(k+1)

= η1∇T (d(k) − ρ
(k)
1

η1
) + η2∇2T (g(k) − ρ

(k)
2

η2
)

+ η3(z(k) − ρ
(k)
3

η3
).

(10)

It is obvious that system (10) is linear and symmet-
ric positive definite, therefore z(k+1) can be efficiently
solved by fast Fourier transform (FFT) [Wang et al.,
2008; Pham, Tran, and Gamard, 2020], under the pe-
riodic boundary conditions:

u(k+1) =F−1

(
F(G)

η1F
(
∇T∇

)
+ η2F

(
∇2T∇2

)
+ η3

)
(11)

where F and F−1 are the forward and inverse Fourier
transform operators, and

G =

(
η1∇T (d(k) − ρ

(k)
1

η1
) + η2∇2T (g(k) − ρ

(k)
2

η2
)

+ η3(z(k) − ρ
(k)
3

η3
)

)
The d and g subproblems are given by:

d(k+1) = arg min
d

(
λ‖d‖1 − 〈ρ1, d−∇u〉

+
η1

2
‖d−∇u‖22

)
,

= arg min
d

(
λ‖d‖1+

η1

2
‖d−∇u(k+1) − ρ

(k)
1

η1
‖22
)
.

g(k+1) = arg min
g

(
γ‖g‖1 − 〈ρ(k)

2 , g −∇2u(k+1)〉

+
η2

2
‖g −∇2u(k+1)‖22

)
= arg min

g

(
γ‖g‖1+

η2

2
‖g −∇2u(k+1) − ρ

(k)
2

η2
‖22
)
.

Similarly to [Goldstein and Osher, 2008], generalized
shrinkage formula can be employed for solving the d and
g subproblems as follows:

d(k+1) = (12)

∇u(k+1) +
ρ
(k)
1

η1∣∣∣∣∇u(k+1) +
ρ
(k)
1

η1

∣∣∣∣ ·max

(∣∣∣∣∣∇u(k+1) +
ρ

(k)
1

η1

∣∣∣∣∣− λ

η1
, 0

)
,

g(k+1) = (13)

∇2u(k+1) +
ρ
(k)
2

η2∣∣∣∣∇2u(k+1) +
ρ
(k)
2

η2

∣∣∣∣ ·max

(∣∣∣∣∣∇2u(k+1) +
ρ

(k)
2

η2

∣∣∣∣∣− γ

η2
, 0

)
.

The z subproblem is given by:

z(k+1) = arg min
z

(
〈1, log z +

f

z
〉+ α(

√
z

f
− 1)2

− 〈ρ(k)
3 , z − u(k+1)〉+

η3

2
‖z − u(k+1)‖22

)
= arg min

z

(
〈1, log z +

f

z
〉+ α(

√
z

f
− 1)2

+
η3

2
‖z − u(k+1) − ρ

(k)
3

η3
‖22
)
.

Therefore, we get:

F (z) = (
1

z
− f

z2
) + α(

1

f
− 1√

fz
)

+ η3(z − u(k+1))− ρ(k)
3 = 0.

Applying the Newton’s Method, we obtain:

z(k+1) = z(k) − F (z(k))

F ′(z(k))
, (14)
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(a) (b) (c) (d) 

(a) (b) (c) (d) 

Figure 1. Test images

Algorithm 1 Adaptive alternating minimization method
for solving the model (4)

1: Initialize: z(0) = q(0) = f ; d(0) = g(0) = 0;
k = 1

2: while Stopping condition is not satisfied do
3: Compute u(k+1) according to (11)
4: Compute d(k+1) according to (12)
5: Compute g(k+1) according to (13)
6: Compute z(k+1) according to (14)
7: Update ρ(k+1)

1 , ρ
(k+1)
2 , ρ

(k+1)
3 by (9)

8: k = k + 1
9: end while

10: return u

where

F ′(z(k)) = (− 1

z2
+ 2

f

z3
) +

α

2

1√
fz3

+ η3.

The complete method is summarized in Algorithm (1).

We need a stopping criterion for the iteration: we end
the loop if the maximum number of allowed outer it-
erations N has been carried out (to guarantee an upper
bound on running time) or the following condition is sat-
isfied for some prescribed tolerance ς:

‖u(k) − u(k−1)‖2
‖u(k)‖2

< ς, (15)

where ς is a small positive parameter. For our exper-
iments, we set tolerance in (15): ς = 0.00001 and
N = 200.

3 Experimental Results
In this section, we present some numerical results to

illustrate the competitive performance of the proposed
model for multiplicative noise removal. We compared
our recovered results with those of the M1 model (1),
the M2 model (2) and the M3 model (3). The com-
pared models are implemented by the state-of-the-art al-
ternating minimization algorithm. Empirically, all im-
ages are processed with the equivalent parameters η1 =

0.01, η2 = 0.01, η3 = 1 in our numerical implementa-
tion. All experiments were carried out in Windows 10
and Matlab running on a desktop equipped with an Intel
Core−i5, 2.4 GHz and 8 GB of RAM.

To assess quality of the restoration results, we use
PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural
Similarity Index Measure) [Wang and Bovik, 2006] and
visual quality. The test images of size 256×256 are
shown in Figure (1). In our example, our images are
corrupted by multiplicative gamma noise with L = 25
and L = 10. In Figures (2) and (4), we show the re-
sults of compared methods for noise levels L = 25,
while in Figures (3) and (5), we show the results of com-
pared methods for noise levels L = 10. In Figures (2)a,
(3)a, (4)a and (5)a, we represent the noisy images. In the
others, Figures (2)(b)–(2)(e), (3)(b)–(3)(e),(4)(b)–(4)(e),
(5)(b)–(5)(e), we show respectively the reconstructions
given by compared methods.

For a better visual comparison, we have presented the
zoomed details of the restored images in Figures (6),
(7),(8) and (9). In these Figures, we include zoomed
details of the original and noisy images in the first and
second column, respectively. From the details in Figures
(6), (7), (8) and (9), we can see that the our model can
get better visual improvement than the others.

For quantitative performance comparison, we compare
the denoised results in terms of SSIM and PSNR re-
ported in Tables (1) and (2) for noise level L = 25, in
Tables (3) and (4) for noise level L = 10 (the best re-
sults are highlighted in bold).

Table 1. PSNR values for noisy images and restored images with
noise levelL = 25

Image
PSNR

Noisy Model M1 Model M2 Model M3 Ours

Cameraman 19.7802 25.6086 25.2369 26.1382 25.9802

Lena 19.5004 26.3679 26.2001 26.6685 26.6609

Parrot 20.5033 26.6007 26.4690 27.2063 27.3685

Brain 24.3012 28.1683 28.7798 28.3065 29.0402

Abdomen 24.2525 28.0374 28.1557 28.9483 29.5549

Head 22.0944 28.0910 28.5307 28.3362 28.8637

CT 26.5314 30.8103 31.0191 31.1879 31.9550

Fluocells 26.4711 25.9226 25.8966 26.9535 27.7561

Average 22.9293 27.4509 27.5360 27.9807 28.3899

We can clearly see that our proposed method gets bet-
ter results than other relative methods in the vast ma-
jority of cases. It again demonstrates effectiveness and
efficiency of the proposed approach for suppressing mul-
tiplicative noise in terms of restoration accuracy and vi-
sual quality.

4 Conclusions
In this paper, we have researched the hybrid regulariz-

ers model, combining the first and second-order TV for
denoising image corrupted by the multiplicative Gamma
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(a) (b) (c) (d) (e) 

Figure 2. Recovered results for images. (a) Noisy image (L = 25), (b) M1 model, (c) M2 model, (d) M3 model, (e) Ours

(a) (b) (c) (d) (e) 

Figure 3. Recovered results for images. (a) Noisy image (L = 10), (b) M1 model, (c) M2 model, (d) M3 model, (e) Ours

Table 2. SSIM values for noisy images and restored images with
noise levelL = 25

Image
PSNR

Noisy Model M1 Model M2 Model M3 Ours

Cameraman 0.49846 0.7408 0.7551 0.7642 0.7741

Lena 0.42893 0.7481 0.7528 0.7611 0.7696

Parrot 0.53286 0.7960 0.8007 0.8150 0.8278

Brain 0.76224 0.9271 0.9346 0.9297 0.9353

Abdomen 0.80878 0.8162 0.8180 0.8400 0.8493

Head 0.68914 0.8409 0.8495 0.8426 0.8503

CT 0.83851 0.8329 0.8360 0.8428 0.8535

Fluocells 0.85083 0.6960 0.6897 0.7678 0.8055

Average 0.6762 0.7998 0.8046 0.8204 0.8332

noise. Computationally, an improved highly efficient al-
ternating minimization algorithm is employed for solv-
ing the proposed optimization problem. Finally, com-
pared with the existing state-of-the-art TV based models,
the experimental results demonstrate that the our pro-
posed approach outperforms other related approaches for
removing multiplicative noise both in quantitative and
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(a) (b) (c) (d) (e) 

Figure 4. Recovered results for images. (a) Noisy image (L = 25), (b) M1 model, (c) M2 model, (d) M3 model, (e) Ours

Table 3. PSNR values for noisy images and restored images with
noise levelL = 10

Image
PSNR

Noisy Model M1 Model M2 Model M3 Ours

Cameraman 16.3002 23.3517 23.1299 24.0922 23.9874

Lena 16.0233 24.4260 24.4095 24.7451 25.1694

Parrot 17.0149 24.3129 24.3015 24.9443 25.4856

Brain 20.6261 25.4421 26.0011 25.6761 26.6263

Abdomen 20.4606 25.6623 25.7900 26.4113 27.4168

Head 18.2888 25.5532 25.9455 25.9190 26.4730

CT 22.7626 28.3723 28.6713 28.6720 29.7884

Fluocells 22.5595 24.4637 24.5098 25.1329 26.2229

Average 19.2545 25.1980 25.3448 25.6991 26.3962

Table 4. SSIM values for noisy images and restored images with
noise levelL = 10

Image
SSIM

Noisy Model 1 Model 2 Model 3 Ours

Cameraman 0.40312 0.6972 0.7071 0.7190 0.7356

Lena 0.30407 0.6906 0.7009 0.7104 0.7280

Parrot 0.41961 0.7497 0.7548 0.7725 0.7942

Brain 0.64233 0.8808 0.8876 0.8857 0.8873

Abdomen 0.72162 0.7627 0.7654 0.8011 0.8119

Head 0.59478 0.7755 0.7902 0.7933 0.8010

CT 0.768 0.7941 0.7980 0.8106 0.8196

Fluocells 0.73204 0.6333 0.6266 0.7134 0.7643

Average 0.5732 0.7480 0.7538 0.7758 0.7927

qualitative terms.
The proposed method can be appiled for multiplicative

noise removal in some practical applications, e.g. Opti-
cal coherence tomography, Laser Doppler Vibration ap-
plications, etc. Optical coherence tomography (OCT) is
an imaging technique that depends fundamentally on the
coherence of the light used in the imaging process, and

multiplicative noise is a significant issue in OCT [Liu,
Zaki, and Renaud, 2018; Goodman, 2020]. In applica-
tions of Laser Doppler Vibrations, speckles noise gener-
ated by the relative in-plane motion between the Laser
Doppler Vibrometry (LDV) and the target damages the
quality of the LDV-captured signal severely [Tabatabai
et al., 2013; Lv et al., 2019; Zhu and Baets, 2019].
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