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    EXTENDED ABSTRACT 

 
1. Introduction 

 

A large number of complex networks, both natural and artificial, share the presence of highly 

heterogeneous, scale-free degree distributions. In this paper we present the evidence for the emergence of 

scaling and of the self-similarity properties in two important software procedures for Internet traffic 

optimization: congestion avoidance and epidemic spreading prevention. Although the rules that define the 

strategies involved in software design should lead to a tree-like structure, the final net is scale-free, perhaps 

reflecting the presence of conflicting constraints unavoidable in a multidimensional optimization process. 

Two basic features are common to many complex networks, including Internet: their scale-free (SF) 

topology [1] and a small-world (SW) structure [2], both being introduced in the proposed model . The first 

states that the proportion of nodes P(k) having k links decays as a power law P(k)=k
-λ 
(with 2<λ<3). The 

second refers to a web exhibiting very small average path lengths between nodes along with a large 

clustering [3]. Due to the high number of nodes and links the simulations have been made on a cluster with 

six processing units using the principles of the Linux operating NS simulator [4].  

 

2. Using the scale free approach in complex networks modeling 

 

2.1 The topology of the Internet and the dynamics of Internet traffic 

 

The Internet is a prime example of a self-organizing complex system, having grown mostly in the absence 

of centralized control or direction. It has been reported that Internet traffic fluctuations are statistically self-

similar [5] and that the traffic displays two separate phases, congested and non-congested. The Internet 

flow is strongly localized: most of the traffic takes place on a spanning network connecting a small number 

of routers which can be classified either as “active centers,” which are gathering information, or 

“databases,” which provide information. So far, simulations and analytical studies have shown that it may 

have a considerable impact on network performance that could not be predicted by the traditional short-

range-dependent models. In our simulations with the new proposed SFN model we have shown that the 

Internet displays a number of properties that distinguishes it from random graphs: wiring redundancy and 

clustering, non-trivial eigenvalue spectra of the connectivity matrix and a scale-free degree distribution.  

 

2.2 Spread of epidemics in complex networks 

 

The propagation of errors occurring on routers and servers that are physically linked in a large network is a 

typical example of epidemic process, in which the corruption (virus) is transmitted from infected to healthy 

individuals. The epidemic process is usually described in terms of individuals and their interactions. In this 

simplified formalism, individuals can only exist in a discrete set of states, such as susceptible (or healthy), 

infected (and ready to spread the disease), immune, dead (or removed), etc. Within this formalism, the 

system can be described as a network or graph, in which the nodes represent the individuals and the links 

are the connections along which the epidemics propagates. Standard epidemiological models usually 

consider homogeneous networks, which are those that have a connectivity distribution peaked at an average 

connectivity k , and decaying exponentially fast for k<< k  and k>> k [6]. On the other hand 

computer viruses and worms spread in environments characterized by scale-free connectivity. The 

proposed model allows studying the effect of the special nature of scale-free distribution on the properties 

of random network models, including methods for the study of the layer structure of the graph, the 

percolation threshold and the critical exponents.  



3. Using self-similarity to infer parameters values in Internet traffic model  

 

To model a distributed network environment like the Internet, it is necessary to integrate data collected 

from multiple points in a network in order to get a complete picture of network-wide view of the traffic. 

Knowledge of dynamic characteristics is essential to network management (e.g., detection of 

failures/congestion, provisioning, and traffic engineering like QoS routing or server selections). However, 

because of a huge scale and access rights, it is expensive (sometime impossible) to measure such 

characteristics directly. To solve this, methods and tools for inference of unobservable network 

performance characteristics are used in large scale networking environment. Our approach assume that 

network traffic (T) can be modeled as a function of three sets of parameters: number of user (N), user 

behavior (U) and application-specific parameters (A). In other words T = f(N,U,A). The user-behavior 

parameters could be the distributions of user “think” time or the number of pages requested by the users in 

web traffic, while the application-specific parameters could be the distributions of object size or the 

number of objects in a web page. 

Our study shows that the distributions of user behavior parameters (U) tend to be correlated over time on 

the same network. Such an observation suggests that one can model the distributions of user-behavior 

parameters at time t2 based on measurement taken at time t1 on the same network. Additionally, we find 

that the distributions of application-specific parameters (A) are likely to be correlated between two 

networks with “similar” user populations. Specifically, we find that the distributions of application-specific 

parameters between two similar networks tend to be correlated when traffic is highly aggregated. Based on 

the above observations, we propose the following approaches to infer traffic from network n1 by utilizing 

measurements taken from network n2, provided networks n1 and n2 have similar user populations: 

• The first step is to collect some period of traffic on both network n1 and n2.   Such initial 

measurements are used to derive the three sets of traffic parameters (N, U, A) of n1 and n2.  

• Once the similarity between n1 and n2 is confirmed and the spatial correlations between them are 

computed, one then are allowed to model all three set parameters (N, U, A) of n1’s traffic at any 

future time based on only the measurements taken from n2.  

 

4 Efficient immunization strategies 

 

 The simplest immunization procedure one can consider consists in the random introduction of immune 

individuals in the population, in order to get a uniform immunization density. In this case, for a fixed 

spreading rate R, the relevant control parameter is the density of immune nodes present in the network, the 

immunity g. The presence of a uniform immunity will have the effect of reducing the spreading rate R by a 

factor 1-g, i.e. the probability of finding and infecting a susceptible and no immune node will be R(1-g). 

For homogeneous networks we can easily see that, for a constant R, the stationary prevalence Rg is 0 if g>gc 

and respectively (gc-g)/(1-g) if g≤gc, where gc is the critical immunization value above which the density of 

infected individuals in the stationary state is null and depends on R as  gc =1- Rc/R. Thus, for a uniform 

immunization level larger than gc, the network is completely protected and no large epidemic outbreaks are 

possible. On the contrary, uniform immunization strategies on SFN are totally ineffective. The presence of 

uniform immunization is able to locally depress the infection’s prevalence for any value of R , but it does 

so too slowly, and it is impossible to find any critical fraction of immunized individuals that ensures the 

infection eradication 

 However, we can take advantage of the heterogeneity of SFN, by devising an immunization strategy 

that takes into account the inherent hierarchy in the network nodes. SFN posses a noticeable resilience to 

random connection failures, which implies that the network can resist a high level of damage (disconnected 

links), without loosing its global connectivity properties; i.e. the possibility to find a connected path 

between almost any two nodes in the system. At the same time, SFN are strongly affected by selective 

damage; if a few of the most connected nodes are removed, the network suffers a dramatic reduction of its 

ability to carry information. Applying this argument to the case of epidemic spreading, one can devise a 

targeted immunization scheme in which the most highly connected nodes are progressively make immune. 

While this strategy is the simplest solution to the optimal immunization problem in heterogeneous 

populations, its efficiency is comparable to the uniform strategies in homogeneous networks with finite 

connectivity variance. In SFN, on the contrary, it produces an arresting increase of the network tolerance to 

infections at the price of a tiny fraction of immune individuals. A most effective strategy seems to be a 

selective one, based on the immunization of a small fraction of random acquaintances of randomly selected 



individuals, which prevents epidemics without requiring global knowledge of the network. Simulations on 

the SFN model shown that a large fraction fc of the nodes need to be removed (immunized) before the 

integrity of the network is compromised. This is particularly true for scale-free networks with 2<λ<3  

where the percolation threshold fc→1, and the network remains connected (contagious) even after 

immunization of most of its nodes. The fraction fc needed to be immunized in order to stop the epidemic 

can be computed analytically. 

 

5.    Experiments and results 

 

In order to do an Internet like network simulation we used a topology generation algorithm which follows 

the scale free networks laws. The algorithm is based on preferential attachment strategy which means that a 

new node will have a higher probability of attachment to those nodes which already have many connections 

(with other existing nodes). Fewer connections nodes have smaller chances to receive new connections. 

Along with this strategy we imposed rules for avoiding cyclic connections, very long chains connections 

and other restrictions. Therefore, we do not have isolated components, the chains are shorter than 30 nodes 

and the topology does not look like a tree. Using the topology generator we can control how cyclic the 

network will be, in our case aprox. 4% of the nodes build a cycle. There are 3 types of nodes: 

Routers, defined as nods with two or more connections; Servers, defined as nodes with a single connection; 

Clients (end-users), defined as nodes with a single connection that initiate connections to servers at random 

time moments. For the proposed model we have one server for each 20 to 100 clients. In simulations 

heavily loaded lines (such as those between routers) are faster, for example server-router 1 Gbps, client-

router 10 Mbps, router-router 10, 100 Mbps or 1Gbps depending on the router type. Simulation can be 

implemented using a distributed network with 6 nodes by running PDNS (Parallel/Distributed NS) which 

represents a number of extensions for NS simulator. This facilitates parallel execution of a network 

simulation in a distributed manner over a 6 nodes network. The primarily objective is to reduce the 

processing effort when simulating huge networks, in which case the demands (for memory and processor) 

may become to big to run the application on a single machine.  

 

6 Conclusions 

 

The main goal of this paper has been to study the effect of the special nature of scale-free distribution and 

of the self-similar behavior on the properties of Internet network models. Regarding the traffic 

optimization, the proposed methodology aims to infer traffic’s QoS at places where taking measurements 

are infeasible and at the level of the whole network, to prevent congestion and blocking. The paper analyses 

also an epidemiological framework obtained in population networks characterized by a scale-free 

connectivity pattern. SFN are very weak in face of infections, and its susceptibility to epidemic spreading is 

reflected also in an intrinsic difficulty in protecting them with uniform immunization policies, but targeted 

or selective immunization procedures achieve the desired lowering of epidemic outbreaks and prevalence.  
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