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Abstract: Motivated by the recent development of Feedback Error Learning (FEL),
this paper proposes a method for closed-loop identification of a Multi Input Multi
Output (MIMO) plant. Given a control system roughly designed, a feedforward
controller is constructed by learning to achieve desirable responses. Then the
learned feedforward controller gives a model of the plant, which will be effective
for re-designing the control system to improve the performance. The effectiveness
of the method is verified through numerical simulation.
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1. INTRODUCTION

The concept of Feedback Error Learning (FEL)
was given by (Kawato et al., 1987), in which they
proposed a model of our body acquiring accurate
motion. Signal transmission in our neural system
is too slow to achieve enough accuracy via feed-
back alone. Hence our body uses a feedforward
mechanism and adapts it by learning from feed-
back error. Kawato et al. applied this mechanism
to control system design, which was novel in con-
trol literature. They originally adopted artifitial
neural network as a function generator for the
feedforward controller, but it turned out later on
that a linear filter is sufficient to this purpose
(Miyamura and Kimura, 2002).

Inspired by their pioneering work, a lot of inves-
tigation has been done and FEL has become an
established method for designing a control system
having a good tracking property without exten-
sive system modeling; see (Miyamura and Kimura,
2002; Muramatsu and Watanabe, 2004) for stabil-
ity proofs of learning, (Alali et al., 2006a; Alali et
al., 2006b) for its MIMO generalization, stability

proof, and its application to manipulators, etc.
The scheme has a two-degree-of-freedom structure
consisting of an adaptive feedforward controller
and a fixed feedback controller roughtly designed
previously; see Fig. 1. Here, the pre-filter is given
to compensate the row relative degree of the plant.
If, in particular, P(s) is biproper, then we can take
Wi(s)=1.

In this scheme, we tune the parameter in the
feedforward controller so that the feedback error
converges to zero. An interesting point is that,
after convergence, the acquired feedforward con-
troller has enough knowledge about the inverse
model of the plant, since its cascade connection
with the plant is equal to the prefilter; see Fig. 2.
Thus, it is natural to expect that we can identify
the plant parameter from this knowledge. In other
words, closed-loop identification is achieved by
applying FEL to the plant. The obtained system
parameters can be used for re-designing the con-
trol system to improve the performance.

In this paper, we first summarize the MIMO FEL
scheme recently proposed by the present authors
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Fig. 1. MIMO Feedback Error Learning Architec-
ture

in (Alali et al., 2006a), and then use the acquired
feedforward controller to obtain the system model.
The performance of identification is evaluated
with some examples in various conditions.

Closed-loop identification is attractive since it
gives a model while operation (i.e., on-line), but
this is a challenging task due to numerical dif-
ficulty. This is the case also in our scheme, but
the result turns out to be practical enough. A
striking feature is that even an unstable plant can
be identified as far as the closed-loop is stable.

2. PROBLEM FORMULATION

Consider an n-dimensional controllable and ob-
servable linear system

z(t) = Ax(t) + Bu(t), y(t) = Cz(t) + Du(t) (1)

with m-inputs and m-outputs (i.e., square sys-
tem). Assume that the system is minimum phase.
Namely, we assume
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If, further, det D # 0, then the system is biproper
(invertible with properness) and construction of
MIMO-FEL is straightforward. Namely, we can
take W(s) = I in Fig. 1, and after learning we

det { ] £0, for all Re(s) > 0.  (2)

Ky,

Feedback Controller

) -

) 0ofs) O P(s) o,
- F;cdforward MIMO Plant
Controller
Wis) =
Pre-filter

Fig. 2. MIMO-FEL Identification Scheme

y(t)

have Qo(s) = P(s) !, so that we attain y(t) =
r(t). Then P(s) is readily identified by inverting
the estimated transfer matrix Qo(s).

If, on the other hand, det D = 0, then we need
to define an appropriate pre-filter to compensate
the delay of the plant as we will explain below.
In order to clarify the point, we further assume
D = 0. Therefore, the transfer matrix is P(s) =
C(sI—A)7'B. (If det D =0 and D # 0, then the
argument will be more complicated but our basic
idea still holds.)

Also, we assume that A, B,C are unknown, but
that

ClAulilB
A= : (3)
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is invertible, where ¢ is the k* row vector of C
and py is the minimal integer such that

kAT IB A0, ppe >1, k=1,---,m. (4)

The integers p1, fio, - - - , bm can be regarded as a
generalization of the relative degree to MIMO sys-
tems. We assume that these integers are known.
Furthermore, they have a close relationship to the
following concept (Wolovich and Falb, 1976).

Definition 1. Given P(s), a square polynomial
matrix L(s) is called an interactor if

Tim L(s)P(s) (5)

is a finite matrix with full rank.

Under the assumption that A in (3) is invertible,
we can set the interactor matrix to a diagonal form

ll (S) 0
L(s) = (6)
0 Im(8)
where i, (s) is an arbitrarily chosen Hurwitz poly-
nomial of degree py for £k = 1,--- ;m. Now the

above mentioned delay-compensation is attained
by taking the pre-filter

1
) 0
W(s) = Lis) " = ™)
1
0 Im(s)

In Fig. 1, the objective of the control is to mini-
mize the error signal between w(t) and the plant
output y(t). We put W(s) to compensate the in-
evitable delay in P(s) due to its strict properness
and take it in the diagonal form so that each r;
corresponds y; without interaction between chan-
nels.



Now the following equations can be deduced from
Fig.1:

y(t) = P(s)u(t)
u(t) =uysp(t) +ugs(t)

upo(t) = Kppe(t), e(t) =w(t) —y(t)  (8)
w(t) =W (s)r(t)

uss(t) = Qo(s)r(t),

where Ky is a feedback gain already designed to
stabilize the plant, and © is a tunable parameter.
Note that the first equation implies

y(t) = £7[P(s)](t)  u(),

where * denotes the time-domain convolution. For
the sake of simplicity, we will adopt this kind of
abuse in time and frequency domains throughout
this paper.

3. OVERVIEW OF MIMO-FEL

We now construct a tunable feedforward con-
troller Qo (s) in order to generate ug(t) using the
following linear filter:

&Gi(t) = Af&i(t) + Byr(t)
&o(t) = Ap&a(t) + Bru(t)
ug(t) = F(t)& (1) + G(t)&(t) + H(t)r(t)
=0O(t)E(1),
9)
where
&u(t)
o) =[F(t) G@t) H({t)], &(t) = 62((t))
r(t
(10)

Ay and By are taken in a controllable canonical
form as:

0 1 0 1
0
1
_fu _fl
Af— )
0 1 0
0
1
L _f,u _fl_

(11)

0
: 0
1
0
0 :
- 1_

where Ay is a stable matrix and (Af, By) is
controllable. Note that the unknown parametric
matrices F(t), G(t), H(t) enter linearly in the
above setting.

The matrix O(¢) is tuned using the following
learning law

i aun (1€ (1) (13)

with a small constant «, called learning factor.
The derivation and the stability analysis of the
learning law as above have been studied exten-
sively in (Alali et al.,, 2006a). We omit a detail
here and simply note the following:

(1) As will be seen later, simulation and ex-
perimental results show effectiveness of the
learning law.

(2) A striking feature of FEL is to use feed-
back error to tune the feedforward controller.
Hence it is rather transparent to show e(t) —
0.

(3) After learning, y(t) — w(t) and hence we
have P(s)Qo(s) = W(s) as far as r(t) is a
sufficiently rich signal. This motivates us to
use FEL for closed-loop identification.

4. MIMO-FEL IDENTIFICATION ANALYSIS

The main objective of FEL as mentioned above
is to improve the tracking performance by means
of learning. It is then natural to expect that the
acquired feedforward controller Qg (s) has enough
knowledge on the plant model, and hence we can
identify the plant parameter from this knowledge.

If P(s) was biproper, then we could take W (s) = I
so that the plant could be identified as

P(s) = Qe(s)™", (14)
by means of the convergent ©(t).
When P(s) is strictly proper (as we have as-
sumed), P(s)”! becomes improper, so that we

need to put the pre-compensator W (s). The fol-
lowing arguement is useful to clarify our method.

For the original system (1) and the interactor L(s)
in (6), there exists a gain R such that

N(s)=C(sI — A+ BR)™'B = L(s)"'A. (15)
The gain R can be obtained by the simple formula
(Mutoh and Nikiforuk, 1992):



C
CA
Ri= A Loy Ll | . (16)
CA*
where
L(s) = Lo+ Lis+---+ L,s", (17)
pr=max(p, -, fim).- (18)

Based on the above, we have the following lemma.

Lemma 1: If the feedforward controller Q(s) is
defined by

Q(s)=[I —R(sI — A+ BR)™'BJA™", (19)

then
P(5)Q(s) = W(s). (20)
Proof: see (Mutoh and Nikiforuk, 1992).

Lemma 1 means that if we take

uo(t) = Q(s)r(t), (21)

then we readily have e = 0 in Figs. 1 and 2.
Hence if Qo (s) converges to Q(s), then our control
objective is achieved, but mnot mnecessarily vice
versa. We will see this below.

We note that the parameterization of (9) can yield
an arbitrary transfer matrix from r(t) to ug(t). By
taking the Laplace transform of (9), we have

un(t) = F(t)(sI — Ay) ™' Byr(t)
+G(t)(sI — Ay) ' Brug(t) + H(t)r(t)

= [1 — G(t)(sI — Af)—le] B
{H®) + F#t)(sT— Ap) By pr(t)
—: Qo (s)r(t). (22)

It is already known that e(t) — 0 as t — oo by
the learning law of Section 3 (Alali et al., 2006a),
if we choose Ky}, such that

M(S) = be[(H0+F0(SI—Af)ile)L(S)-f‘Kﬂ,]il
(23)
is strictly positive real. Then we have

P(s)Qe(s)r(t) = W(s)r(t), (24)

at least for the given r(t). If, further, P(s)Qo(s) =
W (s), then one can identify the plant prameter
based on this learning feedforward controller. In
order to guarantee this, we need to take r(t)
sufficiently rich (i.e., satifying the persistent ex-
citation (PE) condition).

If we do not take such r(t) as a reference signal,
correct identification is not expected any more,
although FEL assures the perfect tracking perfor-
mance anyway. Even so, we may still be able to
estimate the frequency characteristic of P(s) to

some extent, because the good tracking is achieved
for r(t) with limited frequency components. This
is an interesting issue but further analysis remains
as our future work.

Thus, the procedure of closed-loop identification
based on MIMO-FEL can be summarized as fol-

lows:

Step 1: We use the learning law (13) to tune the
linear filter parameter in (10).

Step 2: As O(t) converges, we use the parame-
ter to estimate the plant parameter by P(s) =
W (s)Qg" (s). The inversion is feasible by (22).

Step 3: If 7(¢) is sufficiently rich, then we obtain
the true value. Otherwise we only obtain partial
knowledge of P(s).

5. SIMULATION RESULTS

We consider two examples with first and third
order systems, respectively. Firstly, to illustrate
our idea for closed-loop identification, we perform
numerical simulation using a simplest firsr order
system.

Giving
-5 0 2 0
=0 sl
05 1
¢= [ 1.5 2 } ’
we have the following transfer matrix of the plant:
1 2
P(s) = s+5 s+95
3 4
s+5 s+95
Using (3), we have uy =1, u2 = 1, and
1 2
=la i)

which is invertible. Then, we select the following
interactor

L(s) = {531831}

We now calculate the gain R in order to find the
exact Q(s) using equations (16) and (19):

-2 0
=[5 ]

—25—10 5+

s+1 s+1
Q)= 156475 —05s—25
s+1 s+1

It can be verified that P(s)Q(s) = W(s) =
L71(s).

Second, without using A, B, C, or R, we tune
O(t) using the learning rule (13) so that we



obtain the inverse of the system. In order that the
reference input is sufficiently rich, we take r(t) as a
Pseudo-random Binary Signal (PRBS) generated
for identification purpose in Matlab, as shown in
Fig. 3. Thus, we need to set Ay and By based on
the upper bound of the relative degree (18) p =1
(see (11) and (12)) as

—4 0 10
v=[o Ao ]

We choose the following feedback gain matrix that
maintains the closed-loop stability and satisfy
SPR. condition

The time evolution of ©(¢) can be seen in Fig. 4.
The convergent value is

6
be:|:7

L o~

0.9905 3.0039 0.0042 —2.0006

@ = | —19929
= 1.4932 —0.4994 0.0016 3.0032

1.0022
1.5016 —0.4997

The nominal Qg is

@_—2 130-2 1
=115 -050315 -05]"

It can be seen clearly that ©(t) — ©g. Then
we can obtain the learning feedforward controller
Qo,(s) from (23)
Q@)U (5) =

1 —2.001s> — 11.985 — 9.932
52 +1.9935 4 0.9929 | 1.502s% + 8.992s + 7.454

1.002s> + 5.996s + 4.973
—0.4997s% — 2.994s — 2.48

Note that if we round off the convergent ©, then
we have ©(t) = Qg as t — o0o. As a result, if we
substitute Qg in (23), we have Qo,(s) = Q(s).

Now we estimate the plant using Qe(s) in (25)

. 1
P =
(%) = 3710065 7 34,745 7 24.79
y 0.9891s% + 5.927s + 4.91
2.972s% + 17.8s + 14.76

1.9845% + 11.87s + 9.843
3.965% + 23.72s + 19.66

The comparison between the estimated plant P(s)
and the true plant P(s) is shown in Figs. 5 and
6 in terms of the bode plot and step response.
The etimated one matches the true one. Further,
if we round off the convergent © then we obtain
P(s) = P(s).

In order to check the dependency on signals,
we also tested a reference signal which is not

sufficiently rich (r.(t) = [sin(¢) cos(t)]7). The
time evolution of ©.(t) can be seen in Fig. 7. The
convergent value is

—0.6448  0.1530 1.0810 —1.0344 —2.4260 1.3156
0.5205 —0.0527 —0.6753 0.7263 2.0291 —0.6936

0. =

which is far away from the nominal value ©g.
However, we have e(t) — 0 as shown in Fig. 8.
The obtained feedforward learning controller is:

1
Qo.(5) = 361035 7 8.857

[—2.42652 —20.39s — 42.81
X

2.0295% + 16.2s + 32.2

1.316s% + 10.44s + 20.65
—0.6936s% — 5.741s — 11.91

The second example (i.e., third order system) is

s2+4s+1
s3 + 852 4+ 19s + 23

0
252 + 95+ 7
s3 + 8s2 4+ 19s + 23

Using sufficiently rich reference input r(t) as in
Fig. 3, O(t) has converged to the following matrix

P(s) =

—0.9358 —0.0029 3.8129 —0.0181 0.7893 —0.0007
0.0006 —1.0457 —0.0081 3.4219 0.0150 0.4516

0=
The estimated plant is as follows:
1.267s% +2.371s + 0.3993
. 53 4 6.499s% + 13.74s + 9.482

P(s) =
—0.0422152 — 0.1604s + 0.01846
s3 +6.999s2 + 15.99s + 11.85

0.001934s% + 0.0399s + 0.04784
53 +6.499s% + 13.74s + 9.482

2.214s% + 7.512s + 3.6
s3 +6.999s2 + 15.99s + 11.85

The comparison between the estimated plant P(s)
and the true plant P(s) is shown in Figs. 9 and
10 in terms of the bode plot and step response.
In Fig. 9, the estimated one matches the true one
for the diagonal elements while the off diagonal
elements are close to zero in term of the gain
(i.e., & —40 dB, —70 dB, respectively). This is a
good approximation. Fig. 10 also shows that the
estimated one is close to the actual one.

6. CONCLUSION

In this paper we have proposed a closed-loop
identification technique by means of MIMO-FEL.
If the reference signal is persistantly exiting, the
method has turned out to be effective in simula-
tion.

Thus, one can improve the control performance
by re-designing the controller with the obtained

)



plant model. At this moment, the convergence is
slow, though this is often the case in adaptation
or learning algorithms. It is important to improve
this point, and to compare the proposed method
with existing methods for closed-loop identifica-
tion. After submission of the paper, the authors
became aware of the papers (Kaneko et al., 2005;
Kaneko et al., 2006; Miyachi et al., 2006), where
two degree of freedom structure is used as in our
approach. Hence relationships to these papers are
most interesting.

By the way the auhors have also tested MIMO-
FEL with a real experiment for a two-link ma-
nipulator. They succeeded in approximating it by
a first order system using local angular velocity
and angular feedback with relatively high gain.
The acquired learning controller has improved the
performance significantly as shown in Fig. 11,
which means that MIMO-FEL is effective in noisy
cases. A detail will be presented elsewhere.
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