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Abstract
The report is devoted to the impulsive control opti-

mization problem, when the object of control is de-
scribed by the Lagrangian equation of the second kind.
We consider a class of the Lagrangian equations of the
second kind when the right part does not contain oper-
ations of multiplication of discontinuous functions and
distributions. In this case necessary conditions of an
optimality in the form of a maximum principle are re-
ceived.

Key words
Impulsive control, Lagrangian systems, maximum

principle.

1 Introduction
Currently, necessary optimality condition for optimal

control problem was got, when the control object is de-
scribe by nonlinear equations with linearly dependent
control [Bressan, A., Rampazzo, F.,1991; Bressan, A.,
Rampazzo, F., 1994; Dykhta, V.A., Sumsonuk O.N.,
1997; Miller, B.M., Rubinovich, E.Y.,2002]. Unfortu-
nately, these conditions gets bulky and inconvenient for
application. In particular, it is the reason for that in
the right part of the systems is an operation of multi-
plication of discontinuous functions and distributions
[Schwartz, L.,1950-1951]. There are many classes of
controlled systems in which right part incorrect oper-
ation is not present. In this case necessary optimality
conditions are turn out compact and convenient for ap-
plication. The report is devoted to the impulsive control
optimization problem, when the object of control is de-
scribed by the Lagrangian equation of the second kind,
when the right part does not contain operations of mul-
tiplication of discontinuous functions and distributions.
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2 Statement of the problem
We shall consider the object of control, which will

be described by the Lagrangian equation of the second
kind, which after the solving with respect to the second
derivative of the vectorx will be in the form

ẍ = f(t, x) + B(t, x) v(t). (1)

Here,x andv are respectivelyn- andm-vector func-
tions of time (m ≤ n), t ∈ [t0, ϑ], f(t, x) is an
n− dimensional vector function defined on[t0, ϑ] ×
Rn, B(t, x) is n × m matrix function. Assume that
f(·, ·) andB(·, ·) are continuous in the totality of vari-
ables and Lipschitz continuous inx on the set{t ∈
[t0, ϑ], ||x|| < ∞}, where ||x|| = (

∑n
i=1 |xi|2)1/2,

and satisfy the following standard conditions in the
same set:

||f(t, x)|| ≤ κ(1 + ||x||), ||B(t, x)|| ≤ κ(1 + ||x||),

whereκ is some positive constant.
As a admissible impulsive control we shall take an

control of the type

υ(t) = u(t) +
k∑

i=1

Ciδ(t−Θi), (2)

whereu(t) - is a sectionally continuous vector function,
Ci - constant vectors are the impulse function intensity,
Θi - is the moments of application of impulses from the
interval[t0, ϑ].
Supposeu(t) ∈ U at anyt0 ≤ t ≤ ϑ, andCi ∈ Q,

whereU andQ - are some compact sets,Θi - is the
unfixed moments of applications of impulses.
At the monographs [Zavalishchin, S.T.,

Sesekin, A.N.,1991; Zavalishchin, S.T.,



Sesekin, A.N..,1997] defines the notion of the ap-
proximable solution of a differential equation with
the affine right site as the pointwise limit of the twice
differentiable solutions of the equations (1)xk(t),
generated by the smooth approximationsvk(t) of the
distribution [Schwartz, L.,1950-1951]v(t) of type (2),
the primitives of which converge pointwise to primi-
tives of the distributionv(t), if this x does not depend
on the choice ofvk(t). The right part of equation
(1) does not contain operations of multiplication of
discontinuous functions and distributions. Therefore,
the approximable solution of equation (1) will be the
solution of the respective integral representation of
equation (1).

Problem 1. The functional

J [υ] = g(x(ϑ)) +

ϑ∫

t0

f0(s, x(s)ẋ(s)) ds, (3)

should be minimised along the trajectories of the sys-
tem of differential equations of system (1) by miens of
the controlv(t) from the described class.

3 Necessary condition of optimality
Let us introduce the Pontryagin function for the prob-

lem 1

H(t, x, ẋ, ψ, ψ̇, v) = (
∂f0(t, x, ẋ

∂ẋ
− ψ̇)T · ẋ

+ψT · f(t, x) + ψT ·B(t, x) · v − f0(t, x, ẋ). (4)

The conjugate system for the system (1) will look like

ψ̈ = ψT ∂f(t, x)
∂x

+ ψT ∂

∂x
(B(t, x) · v)− ∂f0(t, x, ẋ)

∂x

+
∂2f0(t, x, ẋ)

∂t∂ẋ
+

∂2f0(t, x, ẋ)
∂x∂ẋ

· ẋ

+
∂2f0(t, x, ẋ)

∂ẋ2
(f(t, x) + B(t, x) v(t)) (5)

The boundary conditions for system (5) will be

{
ψ(ϑ) = 0; ψ̇(ϑ) =

∂q(x(ϑ))
∂x

.

Then the following will be true:

Theorem 1. Suppose optimal control in the problem
1 takes the following form:

υ∗ = u∗(t) +
k∑

i=0

C∗i δ(t−Θ∗i ). (6)

Let x∗(t) andψ∗(t) are the corresponding solution and
dual curves, solutions to systems (1) and (5). Then the
following conditions will be true:
a) for all t ∈ [t0, ϑ] except for the points of disconti-

nuity u∗(t) and the momentsΘ∗i

ψT
∗ ·B(t, x∗) · u∗(t) = max

u∈U
ψT
∗ ·B(t, x∗) · u(t); (7)

b) in every pointΘ∗i

ψT
∗ (Θ∗i ) ·B(Θ∗i , x∗(Θ

∗
i )) = 0; (8)

c) the functionψT
∗ (t) · B(t, x∗(t)) is continuous on

the interval[t0, ϑ] and differentiable everywhere, ex-
cept for the momentsΘ∗i ;
d) the function

H0(t, x, ẋ, ψ, ψ̇)

= (
∂f0(t, x, ẋ

∂ẋ
−ψ̇)T ·ẋ+ψT ·f(t, x)−f0(t, x, ẋ) (9)

is continuous at(t0, ϑ) and differentiable throughout it,
except for pointsΘ∗i , that

∂

∂t
H0(t, x∗(t), ẋ∗(t), ψ∗(t), ψ̇∗(t))

=
d

dt
H0(t, x∗(t), ẋ∗(t), ψ∗(t), ψ̇∗(t)).

The latter means in particular that if the problem is
autonomous, then

H0(t, x∗(t), ẋ∗(t), ψ∗(t), ψ̇∗(t)) = const

at (t0, ϑ).

We shall make some remarks to the theorem 1.
1. The condition (7) allows to find a regular compo-

nent of the optimum controlv∗(t).



2. If Q = Rm then the condition (7) turns to

ψT
α B(t, x) = 0. (10)

3. In case conditionsx(ϑ) = xϑ andẋ(ϑ) = ẋϑ are
set for the right end of the trajectory, no restriction is
placed on the conjugate variable.
4. The moments of the action of impulsive control

are defined from a condition (8). Unfortunately, the
maximum principle does not contain the obvious infor-
mation on sizes of intensity of impulses. These sizes
it is necessary to receive from consequences of condi-
tions a) and b). Here we have analogy with the singular
control in the classical theory of optimal control.
Solutions of the impulsive optimal control problem of

Lagrangian systems wich was stem of digitization at
the time series was considered in [Yunt, K., 2007].

4 Example
Assume that control object is described by equation

ẍ = υ; (11)

The problem is to minimize functional

J [υ] =
∫ 1

0

(x2 + kẋ2)dt

along system trajectories (11) starting at the point

x(0) = x0, ˙x(0) = ẋ0

and to arrive at zero point at the end point.
In this case adjoined equation is given by:

ψ̈ = −x + kυ; (12)

Theorem 1 is applied to the problem. In this exam-
ple no restrictions are placed on control variableυ, i.e.
U = Q = R1. Hence, in our case condition (7) will
also take the form (10):ψ(t) ≡ 0 with t ∈ (0, 1). Then
ψ̈(t) = 0 according to (12) condition−x + kυ = 0
must also be true for the regular part of optimal con-
trol, i.e.

υ =
1
k

x. (13)

It is easy to show that the trajectories of the sys-
tem (11) with control (13) will be given by hyperbola
curves (the graph which you can see at Figure 1):

x2 − kẋ2 = C. (14)

Figure 1.

According to the condition d), function
H0(t, x, ẋ, ψ, ψ̇) must be continuous at(0, 1). In
this example function must be continuous at(0, 1) and

H0(t, x, ẋ, ψ, ψ̇) = −1
2
(x2 + kẋ2).

Therefore, optimal control has no impulse components
on(0, 1), which are only possible witht = 0 andt = 1.
As the point must arrive at zero at the end point and
functionx(t) is continuous on(0, 1), x(1) = 0 andẋ
coordinate is jumps to zero by impulse.
Finally, we can define the value of initial jump by

which a phase point arrives at one of hyperbola curves
(14). By substituting equation (13) to equation (11) and
solving it, we obtain the following:

x(t) = C1e
1√
k

t + C2e
− 1√

k
t
. (15)

ẋ(t) =
1√
k

C1e
1√
k

t − 1√
k

C2e
− 1√

k
t
. (16)

It agrees (15)x(1) = 0, then

C1e
1√
k + C2e

− 1√
k = 0. (17)

Except for thatx(0) = x0. Therefore

C1 + C2 = x0 (18)

From system (17), (18) we find, that

C1 = − x0e
− 1√

k

e
1√
k − e

− 1√
k

; C2 =
x0e

1√
k

e
1√
k − e

− 1√
k

.



Therefore it agrees (16)

ẋ(0+) = − x0(e
1√
k + e

− 1√
k

√
k(e

1√
k − e

− 1√
k )

With the last formula we can find initial jump value

C∗0 = ẋ(0+)− ẋ0 = − x0(e
1√
k + e

− 1√
k )√

k(e
1√
k − e

− 1√
k )
− ẋ0.

Initial jump which ensures arrival at zero point is given
by equation:

C∗1 = −ẋ(1− 0).

Thus, extreme control will take the formυ∗ =
C∗0δ(t) + C∗1δ(t − 1) + 1

kx. On account of the linear
nature of system (11) and convexity of functionalJ [υ],
we can state that obtained extreme control is optimal.
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