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PHASE CONTROL OF ENTANGLED STATES
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Abstract
Entanglement is a fundamental quantum feature

which plays an important role in quantum information
and quantum computing. In recent years, many efforts
have been done for understanding the survival of quan-
tum entanglement in open systems at high temperature.
In this work, we consider a quantum system of two cou-
pled parametric oscillators in contact with a common
heat bath and with a time dependent coupling term. We
demonstrate that the oscillators become entangled ex-
actly in the region where the classical counterpart, a
Mathieu oscillator, is unstable. The instability regions
of the system have been theoretically and experimen-
tally explored by means of a weak sinusoidal perturba-
tion, with adjustable amplitude and phase, applied to
the oscillation frequency. We show that if the classi-
cal system passes from stable to unstable regions as a
consequence of the perturbation, the quantum oscilla-
tors become entangled. This means that it is possible
to generate and manipulate entanglement controlling
the dynamical behaviour of the associated classical sys-
tem.
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1 Introduction
Entaglement is an important resource for sev-

eral quantum information applications, for exam-
ple, quantum cryptography, quantum metrology

and quantum computation [Nielsen, Chuang and
Grover, 2002][Horodecki, Horodecki, Horodecki and
Horodecki, 2009]. However, interactions with the en-
vironment, even when very weak, imply decoherence
in the system with consequent loss of entanglement
[Galve, Pachón and Zueco, 2010]. In this paper we
consider a system of two coupled oscillators in contact
with a common heat bath and with a time dependent
oscillation frequency. The possibility to control the
entanglement between the two oscillators has been ex-
plored. This is achieved by means of an external sinu-
soidal perturbation applied to the oscillation frequency.
We demonstrate that the oscillators are entangled ex-
actly in the region where the classical counterpart is
unstable, otherwise entanglement is not possible. An
analog electronic version of the oscillator has been im-
plemented.

2 Theory
As introduced we are considering a system of two cou-

pled oscillators, 1 and 2, interacting with a common
heat bath. The underlying Hamiltonian is given by
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where ω (t) is the oscillator frequency of interest and
{X1, X2, P1, P2} are the position and momentum op-
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erators for 1 and 2; ωk and {xk, pk} are the frequen-
cies and the position and momentum operators of the
environment oscillators; the constants ck correspond
to coupling coefficients between the oscillators 1 − 2
and the environment and c (t) is the coupling between
the oscillators. After some operator transformations the
above Hamiltonian can be rewritten as:

H = H+ +H− (2)
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where Ω2
± (t) = ω2 (t) ± c (t) /m0, H− and H+ are

the Hamiltonian of a free oscillator and an oscillator
coupled with the environment, respectively.
The connection between classical instabilities and the
existence of quantum entanglement relies on the evalu-
ation of the covariance matrix elements of the operators
{X1, X2, P1, P2}. Such elements depend on the solu-
tions of the following differential equations

..

X− (t) +Ω2
− (t)X− (t) = 0 (5)

..

X+ (t) +

(
Ω2

+ (t)− γ2

4

)
X+ (t) = 0, (6)

where γ is the damping rate. Equations (5) and (6) are
the classical counterparts of the Hamiltonians H− and
H+, respectively. These equations have the same struc-
ture of a Mathieu equation.
As a measure of entanglement we consider the loga-
rithmic negativity EN computed from the covariance
matrix elements of the operators {X+, X−, P+, P−}.
As demonstrated in Refs. [Roque and Roversi, 2013]
[Gonzalez-Henao, Pugliese, Euzzor, Abdalah, Meucci
and Roversi, 2015] the entanglement between the two
oscillators only depends on the instability of the solu-
tions of X−.

3 Experiment
Here we describe the experimental implementation of

a Mathieu oscillator and its control based on the phase
control technique. Such an oscillator can be described
by the following set of first order differential equations
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ẏ = −
[
ω2
o −

γ2

4 + εcos(ωdt)
]
x

= −
[
ω2
r + εcos(ωdt)

]
x

(7)

where ωd is the angular driving frequency and the

ωr =
(
ω2
o −

γ2

4

) 1
2

is the natural angular frequency.
It is well known that the parametric oscillator (7)
presents diverging solutions when fd = ωd

2π approaches
some specific values, in particular, around twice the
natural frequency fr = ωr

2π . As we are interested in
driving the system to escape from or to enter in these
instability regions an analog electronic version of the
Mathieu oscillator has been implemented as in Fig.1.

Figure 1. Circuital implementation of Mathieu oscillator and its
phase control. U1 = LT1114CN , U2 = MLT04G,
Rγ2/4 = 438kΩ, Rω2

o
= 39kΩ, Rε = 51kΩ, Rm =

4.7kΩ, R = 43kΩ, R1 = 1.6kΩ, R2 = 4.7kΩ,
C = 1.45nF .

The circuit is realized using commercial electronic
components. The harmonic oscillator with natural fre-
quency fr, is obtained by using a cascade of four op-
erational amplifiers LT1114CN by Linear Technology.
A function generator Hameg HM 8131-2 provides the
sinusoidal driving signal Vε = ε ·cos(ωdt), a multiplier
chip MLT04G by Analog Devices is used to implement
the product Vε ·x. The experimental evidence of diverg-
ing solutions (X and Y outputs in Fig.1) is given by ob-
serving saturation imposed by the integrated electronic
components. By varying fd, the system approaches
the instability region and the oscillating solutions be-
come modulated at the frequency difference fd − fr.
The modulated signal will be clipped when saturation
is reached. Inside the instability region the signal ex-
ceeds the saturation threshold value and the amplitude
modulation vanishes.
The regions of instability, that is, the Floquet tongues of
the Mathieu equation [Arnold, 1989] [Abramowitz, M.
and Stegun, I., 1965], have been experimentally recon-
structed in the parameter space ε−fd/fr (see Fig.2). In
order to handle dimensionless quantities, the variable ε
has been rescaled to the amplitude of the harmonic os-
cillator. The first two instability regions corresponding
to fd ≃ fr and fd ≃ 2fr are reported.
The dynamics of the Mathieu oscillator [Abramowitz,
M. and Stegun, I., 1965] can be controlled by using the
phase control technique. This strategy has been fre-
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Figure 2. First two instability regions experimentally obtained for
several values of ε and fd of the Vε signal.

quently used to tame chaotic behaviour in driven non-
linear oscillators. It consists in applying a suitable si-
nusoidal modulation to a given system parameter. The
amplitude of the control signal and the phase differ-
ence between the intrinsic oscillation and the sinusoidal
control signal are crucial to manipulate the dynamics
which is modified according to
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}
x
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}
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where the parameter ε is now modulated by a sinu-
soidal signal at the same frequency. The behaviour of
the controlled system depends on the strength m and
the phase difference ϕ between the two signals Vm(ϕ)
and Vε.
The implementation of phase control is shown in the
bottom part of the electronic scheme of Fig. 1,
where two additional multipliers MLT04G have been
included. The two function generators Vε and Vm(ϕ)
have been connected in a master-slave configuration
ensuring a given and adjustable value of their phase dif-
ference.
Phase control has been applied to a stable solution near
the border of instability region at fd = 1.77fr (see Fig.
3).
In this figure we can observe a Arnold tongue [Arnold,
1989] , in the region around ϕ = 180◦, a transition
from stable to unstable solutions and vice versa as the
perturbation strength m is increased.

4 Discussion
In this section we show the connection between entan-
glement and classical instabilities. By evaluating the
logarithmic negativity, as defined in Ref. [Roque and
Roversi, 2013], we observe the appearance of entan-
glement only for those values of m and ϕ where the
classical oscillator is unstable (see Fig. 4). In Fig. 4 (a)
we show the instability region associated with a posi-
tive Floquet coefficient λ−. In Fig. 4 (b) we report the

Figure 3. Stable (S) and Unstable (U) solutions. Phase control start-
ing from a stable solution at fd = 1.77fr , ε = 0.215.

logarithmic negativity EN showing that entanglement
only occurs when the classical dynamics is unstable.
In Fig. 4 (c) we show the linear relatioship between the
average rate of the logarithmic negativity and the real
part of Floquet exponent for fd = 1.77fr ,ϵ = 0.215
and m = 3.

Figure 4. (a) map of Floquet exponent vs phase and amplitude of
perturbation, (b) temporal evolution of logarithmic negativity EN

vs phase (c) logarithmic negativity average rate vs Floquet exponent.
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5 Conclusion

The transition between stable and unstable solutions
of a Mathieu oscillator has been investigated by means
of the phase control technique. The appearance of in-
stabilities is closely related to entangled states at high
temperature of a system of two coupled oscillators in-
teracting with a common heat bath. Thus, we can
generate or suppress quantum entanglement controlling
amplitude and phase of a external sinusoidal perturba-
tion. We also demonstrated the linear relationship be-
tween entanglement rate and Floquet exponent.
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