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Abstract: This paper is devoted to the problem of maintaining the integrity of navigation systems (NSs) 

of maneuverable aircraft under real noise environment. The proposed solution of this problem relies on 

the potentialities of hardware and algorithmic redundancy when constructing the loops for primary and 

secondary signal processing. Such a redundancy permits one to improve the reliability of estimation of 

NS state parameters under uncertainty and also to ensure the mutual support of NSs if critical situations 

occur. Hardware redundancy is assumed to be attained by the integration, into a unified navigation-time 

space, of air data, inertial, and satellite measuring channels. It is also assumed that algorithmic 

redundancy is achieved by the integration, into a single information space, of procedures for adaptive 

robust signal processing and combined procedures for detecting and counteracting outliers and failures, 

too. The results of experimental studies are given, which corroborate the effectiveness of applying the 

proposed approach in practice. 
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1. INTRODUCTION 

This paper relating to the domain of noise-immune 

navigation reveals the possibilities of using the methods of 

multilevel signal processing for improving the objectivity of 

monitoring the integrity of functionally bound airborne 

systems, and also the reliability of state estimation of such 

systems. The term “integrity”, as applied to a navigation 

system (NS), reflects the ability of the NS to maintain the 

required operational characteristics irrespective of its 

operation conditions. The familiar solutions of this problem 

rely on the detection of failed components, the elimination of 

such components from the structure, and on the restoration of 

serviceability of NSs by means of hardware reconfiguration. 

The implementation of such an approach calls for a 

substantial hardware redundancy which seems to be 

impossible in a number of cases. Redundancy reduction may 

result both in a breach of continuity of navigational support 

and in a violation of air navigation safety. One possible 

approach to the solution of this particular problem is based on 

the integration of NSs, i.e., when their integrity is ensured by 

the mutual support of measuring means that are physically 

different in nature. Such an interaction of the NSs with each 

other allows one to retain or to reduce gradually their 

performance qualities if critical situations occur and noise 

conditions change. In tightly-coupled NSs, the mutual 

support is implemented at the level of the both secondary and 

primary signal processing. At present, the theoretical 

foundation for the integration of NSs is the mathematical 

apparatus of the extended Kalman filtering (EKF) and 

decision theory. However, under the conditions of statistical 

and parametric uncertainty, the realization of integration 

characteristics of NSs on the basis of such a mathematical 

apparatus involves a number of difficulties caused by the 

possible loss in integrity of the signal processing system 

itself. By the integrity of an integrated data processing (IDP) 

system is meant the state of this system such that the required 

estimation reliability of navigational parameters is ensured. 

The reliability, in its turn, is characterized by the non-

divergence condition of the EKF, i.e., by the condition where 

the estimates obtained fit their predicted mean-square values 

adequately. This gives grounds to include the following loops 

intended for the protection of the EKF from its divergence, 

see Chernodarov et al. (1996): 

 a robust-protection loop which minimizes the risk of 

losing the integrity in circumstances where the actual and 

“simulated”, i.e., a  priori assumed, distribution laws for 

the generalized state parameters of the IDP system are 

inconsistent with each other; 

 an adaptive-protection loop which provides the 

parametric tuning, for the actual operation conditions, of 

the  IDP system having a robust risk-oriented architecture.  

The technique used to unite, in the interests of counteracting 

the uncertainty, the above-mentioned loops into an integrated 

structure relies on the theory of optimization of stochastic 

systems on the basis of non-classical objective functionals. 

The purpose of this paper is to justify a unified technology 

for  counteracting the uncertainty and protecting the integrity 

of   NSs at the level of primary and secondary processing. 

 

In tightly-coupled NSs, protection of the integrity is ensured 

by their mutual support at the level of both secondary (SDP) 

and preliminary (PDP) data processing. Traditionally, in the 

SDP loop, the inertial NS is a master NS, and, in the PDP 

loop, the satellite NS is a master NS. A technology for the 

monitoring and protection of the NS integrity at the level of 

secondary signal processing was discussed in Chernodarov et 

al. (1999). In the present paper we propose that in the primary 

processing of the signals of sensors, i.e., outside information 

should be used. 
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2. STRUCTURE OF A SYSTEM FOR THE PRIMARY 

PROCESSING OF INERTIAL-SENSOR SIGNALS  

 

The current state of the art in the monitoring theory  is 

characterized by a wide use of the methods of optimal 

Kalman filtering, see Gertler (1998). As is known, estimation 

systems that are Kalman ones in structure include loops 

intended for parameters prediction and for their updating on 

the basis of observation processing. When implementing the 

prediction loop, provision should be made for models that 

reflect variations in sensor output signals between the 

sessions where observations are formed. We propose that 

such models should be constructed, on a real-time basis, from 

the moving sample of readings of sensor signals by the use of 

the Chebyshev orthogonal polynomials. In view of the 

smoothing properties of the Chebyshev polynomials, it is 

apparently also possible to perform preliminary restoration of 

the valid signal at the prediction stage. Updating of the 

predicted signal and estimation of the instrumental drifts of 

sensors are realized from the processing of observations. As 

observations, we propose that the residual between the 

predicted and actual sensor signals should be used, along 

with the appropriate invariants. The invariants can be “a 

priori” known physical quantities, such as a change in the 

rotation angle of an inertial measurement unit, a change in the 

sensor output signal of the appropriate order, etc. Based on 

the polynomial and temporal filtering of sensor signals, it is 

apparently possible to realize monitoring procedures for 

inertial measurement units according to the combined 

goodness-of-fit test 22
/ , see Chernodarov et al. (2003). 

The use of such a test permits one to recognize outliers 

against the background of failures, to improve monitoring 

reliability, and to ensure strapdown inertial navigation system 

(SINS)  integrity. 

 

In this paper, a loop intended to protect the integrity of 

signals of an inertial measurement unit (IMU), which is based 

on fiber-optic gyros (FOG) is dealt with.  The necessity of 

protecting SINSs built around FOGs from discordant signals 

is connected with the fact that fiber optic tools intended to 

measure angular-rotation rate are highly sensitive to external 

disturbances.  In the implementation of the above loop, the 

following parameters are used: 

i
  are observed readings of the FOG output signal; 

m
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1/ )(ˆ̂  is the predicted value of the FOG 

output signal; )( ik tP  are the Chebyshev normalized 

orthogonal polynomials; kq̂  are weight coefficients; 

jjj zzν ˆ is the residual between the actual value jz  and 

the predicted value jjj mHẑ  of observations; jm , iix /ˆ  

are the estimates of the error vector 
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of FOG signal readings on a moving time interval; RKF is a 

robust modification, see Chernodarov et al. (1996),  of the  

Kalman filter; 22
,  are tolerances, see Chernodarov and 

Patrikeev (2003);  is the delay by one bit; ny t  is the 

rotation angle (an invariant) of the IMU оy-axis in the inertial 

space over the time niin ttt  when the base has no 

motion with reference to the Earth. The parameter 
2
j  is 

formed using the current residual and it reflects the current 

status of the j-th channel of the vector of observations. If it is 

out of the tolerance 2  , this fact may be associated both with 

outliers and with failures. The  parameter Fj   is  the quotient  

of  the actual  and predicted variance of the residual. It is 

formed over an averaged range of values of the residual on a 

moving time interval. Therefore, if it is out of the 

tolerance 2 , this fact may be associated with a gradual 

failure. In accordance with the proposed technology, in the 

absence of discrepancy, the residual j is processed by an 

EKF, whereas a failure is counteracted by connecting a 

redundant channel, and an outlier is counteracted by the 

robust processing of the residual with the use of the influence 

function )( , see Chernodarov et al. (1996). This function 

defines the level of confidence in incoming measurements. 

 
3. PECULIARITIES BY SECONDARY PROCESSING  

OF NAVIGATION SIGNALS  

During the secondary data processing, see Chernodarov et al. 

(1999), the parameters are formed, which describe the 

translational and rotational motion of an object in a 

navigational coordinate frame. At present, it is considered 

that, in order for the above-mentioned problem to be solved, 

the use of dissimilar (in the principle of operation) measuring 

devices and the unification, into an integrated structure, of 

these devices on a basis of the procedures of extended 

Kalman filtering are justified. Therefore, the necessity arose 

of protecting the integrity of a system for secondary 

integrated data processing. By the integrity of an SDP 

system, in this case, is meant the state of the system such that 

the reqired estimation reliability of navigational parameters is 

ensured.  

The reliability, in its turn, is characterized by the no-

divergence condition of the EKF, see Fitzgerald (1971), i.e., 

by the condition where the estimates obtained fit their 

predicted mean-square values adequately. This gives grounds 

to consider the loops intended for adaptive robust protection 



 

 

     

 

of the EKF from divergence as a means for the maintenance 

of the integrity of an SDP system.  

 

4. ROBUST MODIFICATION OF U-D KALMAN FILTER 

 

Following Huber (1981), by «robustness» we shall here mean 

the non-sensitivity of an estimating filter to small deviations 

from the assumptions regarding the models of the errors of 

sensors such as a gyroscope, an accelerometer, a pseudo-

range sensor, and a pseudo-velocity sensor. As for integrated 

NSs, this assumption is chiefly that the noise of sensors is 

Gaussian in character. That is why, a need arises for 

protecting the filter from outlying observations the errors of 

which are anomalous with reference to the Gaussian 

distribution. Present-day approaches  to the solution of the 

above problem rely on the application of the influence 

function ψ, which defines the level of confidence in incoming 

observations. Such a function can be formed for the 

normalized residual jjj / , where the residual itself, 

i.e., jjj zz ˆ  is the difference in value between the 

actual observation zj and the predicted observation 

jjj mHẑ . For the normalized residual, one can not only 

form the robust-likelihood function ρ(β) but one can also 

perform the optimization of the estimates 
f
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where )(ln)( f ; )(f is a probability density 

function. The solution of the problem (1), in view of the 

constraint 
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is an algorithm for robust estimation, where 
iФ , 

iГ  are 

transition matrices for the state vector
ix and the disturbance 

vector 
i
 respectively. The above algorithm is available in 

the Kalman-Joseph form (KJF) in Chernodarov et al. (1994). 

As an alternative to the KJF, the numerically stable U-D filter 

finds application, too. See Bierman (1977). The structure of 

such a filter is formed on a basis of the following 

representation of the covariance matrix: T
//// iiiiiiii UDUP , 

where Ui/i is an upper triangular nn  matrix with unity 

diagonal elements; Di/i is a diagonal matrix. In this case, when 

the Riccati equation is solved for the matrices Ui/i and Di/i , the 

extraction of square roots is not needed. At the same time, 

positive properties of the triangular factorization 
2/1

/// iiiiii DUS are retained. At present, the U-D technology 

is considered to be basic when onboard EKF modifications 

are constructed. The mapping of such an algorithm onto the 

robust KJF structure has the following form: 
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where mj , iix /ˆ  are the estimates of the state vector  x at the   

i-th step after the j-th component and the whole vector zi of 

observations are processed, respectively; 
iQ  is a covariance 

matrix for the disturbance vector. The MWGS is the 

procedure, see Bierman (1977), intended to transform the 

aggregate of matrices jW  and jD , which are an 

)( rnn matrix and an )()( rnrn matrix, respectively, 

into the aggregate of the nn matrices Uj and Dj  ;  
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The Joseph-Bierman  algorithm presented here has an open 

architecture that enables extending the capabilities of tools 

that are designed for protecting the integrity of estimating 

filters. The functions 
j

and j  can be formed with due 

regard for «a priori» assumptions as to the distribution laws 

of the valid signal and noise. Selection of the values of the 

above functions relies on necessary conditions, see Mehra 

(1970), for the filter to be divergence-free, namely: 

(a) the generalized parameter has the Gaussian distribution 

)1,0(N ; 

(b) the rule of 3 is fulfilled, see Portenko et al. (1985), for 

the probability P that a random variable having the Gaussian 

distribution will be on the interval ]3,3[ , i.e.,

 0027.0}3][{ EP .       (4) 

For the random variable the rule (4) can be written as

 9973.0}3{P .       (5) 

Thus, to the proper functioning of the filter can be put into 

correspondence the inequality 3       (6) 

and also the following values of the functions: 

)5.0exp()2()(
2)2/1(

gf ; 
2

5.0)2ln(5.0)(g ; 

jjg )( ; 1)( jg . 

The violation of inequality (6) may be caused both by 

disorder in the normal operation of the filter and by the 

presence of discordant observations. In robust statistic, e.g. 

Huber (1981), Gaussian random variables having «outliers» 

are described by the Laplace distribution. The following 

functions can be made to correspond to such a distribution 

and to off-design conditions of the filter operation: 

|)|exp(5.0)(lf ; 2ln)(l ; 1)( jl ;

0)( jl . 

The vagueness of boundaries between anomalous and 

conditioned signals can be taken into account by application 



 

 

     

 

of the mathematical apparatus of fuzzy sets. Such a 

mathematical apparatus enables one to formalize the 

uncertainty with the use of fuzzy numbers and their 

respective membership functions. Specifically, using a 

symmetric triangular form for description of membership 

functions, we can allow for the fuzziness of the classification 

of residuals by means of the appropriate reduction of weight 

coefficients in the vicinity of the tolerance of 3 . However, 

an improved variant of tuning an influence function in the 

vicinity of the above tolerance can be realized on a basis of 

the convolution of the Gauss-Laplace PDF. Such a 

convolution can be performed using the following moment 

generating functions (MGFs), see Wu (1993): 

        )2/exp()1()()()(
212

lg TTTMTMTM gl ,        (7) 

where )(TM is an MGF; T  is generally a complex number; 

)(ln)( TMTK is a cumulant generating function. Relying 

on the results of Wu (1993), the following relations can be 

shown to hold for the normalized residual βj: 
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where 0Т  is the value of the argument at a saddle point for 

which the following equality is valid: 

                                 0)( jТ ТК                    (10) 

In view of the approximation 22
)1ln( TT and relations 

(7)-(10), the parameters j  and j take the form 

3/)(lg j ;   3/1)(lg j . 

The influence function and its derivative, which reflect the 

assumptions considered are shown in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.  Diagram for the control of an estimating filter with an  

influence function 

 

5. ANALYSIS OF THE RESULTS OF STUDIES 

 

The SINS-1000 integrated strapdown inertial satellite 

navigation system, see Korkishko et al. (2008), which is built 

around the FOG -1000 fiber-optic gyros designed by the 

“OPTOLINK” RPC (Zelenograd, Russia) has been the object 

of experimental studies. Experiments have been carried out 

on the ground when the necessary equipment was placed on a 

test bed and then housed in a mobile laboratory. The timing 

diagram of SINS operation included the following stages: 

coarse initial alignment, fine initial alignment, and a 

navigational mode. At the stage of coarse initial alignment, 

IMU angular position was approximately determined using 

sensor output signals. At the stage of fine initial alignment, 

estimation of and compensation for both the errors of the 

angular position of IMU sensors and IMU sensor drifts were 

carried out by the sequentially processing of the observed 

signals zi of the following form: 
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where PIA stands for the position of the initial alignment; 

ii ,  are the geodetic latitude and longitude of the SINS 

position; 
Т

][ VVVV is the ground velocity vector of 

IMU motion, given by its components along the axes of the 

reference navigation frame o ;  is the  angular velocity 

of Earth rotation; it = ti-ti-1  is an observation step; 0С is the 

direction cosine matrix, that characterizes the angular 

position of the IMU-fixed frame oxyz with respect to the 

inertial frame OXIYIZI.  In the navigational mode, SINS errors 

were estimated and compensated for from position and 

velocity observations, i.e. 
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where 3C  is the direction cosine matrix that characterizes the 

angular position of the reference frame o   with respect to 

the geodetic frame OENH. The basic vector )(tx  was 

comprised of 17 parameters, namely: the errors  in the 

reckoning of components of the ground velocity vector; the 

errors    in the reckoning of components of the navigation and 

orientation quaternions; the angular drifts  of FOGs, and the 

biases  of accelerometers. The results of a comparison 

analysis of SINS operation when using different schemes for 

the damping of sensor errors were obtained on a basis of the 

reckoning of motion parameters from the recorded signals of 

sensors such as the IMU and the GPS. 

 

Certain of the results of a tested experiment on the estimation 

of accuracy characteristics of the SINS 1000 system are 

shown in Figs. 2-5. Figure 2 depicts the following signals: the 

output signal (a light-colored graph, arc sec/sec) of the 

“vertical” gyro; the output signal (a dark-colored graph) of 

the same gyro, which was smoothed by means of a robust 

digital filter. In Fig. 3, the following signals are shown: the 

output signal (a light-colored graph, m/sq.sec) of one of 
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horizontal accelerometers; the output signal (a dark-colored 

graph) of the same accelerometer, which was smoothed with  

the aid of a robust digital filter. The above smoothing has 

been performed when sensor signals were picked off with a 

frequency of 1 kHz. Figure 4 depicts the FOG actual 

instrumental drift (deg/h), which is determined as the mean 

value of “zero” bias on the time intervals of 10 sec, and its 

estimate which was obtained both in the processing of 

observations (11)-(13) with a frequency of 1 Hz during the 

fine initial alignment (100-600 sec) and when predicting such 

an estimate in the navigational mode with the aid of 

algorithm (3). In Fig. 5, an estimate of the accelerometer bias 

is shown. Beginning with the moment t=600 sec, the SINS-

1000 system was functioning in the autonomous inertial 

mode. Figs. 6-9 show errors in the reckoning of the ground 

velocity V  and circular error in the object position S . 

Figure 6 reflects the dynamic behavior of the ground velocity 

error when sensor drifts are damped, and Fig. 7 reflects the 

above behavior when the sensor drifts are not damped. Figure 

8 reflects the dynamic behavior of the circular error in the 

object position when sensor drifts are damped, and Fig. 9 

reflects the dynamic behavior of the circular error in the 

object position when sensor drifts are not damped, where  
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Fig. 2.  Output signal of the “vertical” gyro                        
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Fig. 3. Output signal of one of horizontal accelerometers          
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  Fig. 4. FOG instrumental drift and its estimate 
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Fig. 5. Accelerometer bias estimate 

 

 

                                                                              t, sec 

Fig. 6. Dynamic behavior of the error of the ground velocity 

when sensor drifts are damped 

 

 

                                                                        t, sec 

Fig. 7. Dynamic behavior of the error of the ground velocity 

when sensor drifts are not damped 
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Fig. 8. Circular error of the object position estimate when 

sensor drifts are damped 
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Fig. 9. Circular error of the object position estimate when 

sensor drifts are not damped 

 

Thus, the character of sensor signals necessitates protection 

of the integrity of the EKF together with the loop intended to 

damp errors. 

 

 

6. CONCLUSIONS 

 

The results of our studies corroborate the effectiveness of 

combination, into a unified technological process, of the 

following procedures for multilevel processing of sensor  

signals: adaptive robust polynomial smoothing of the signals; 

optimal estimation of  instrumental sensor drifts with the use 

of the Kalman filter. With the approach noise components of 

sensor errors are “suppressed” at the stage of signals 

smoothing, and auto-correlated (systematic) components of 

sensor errors are “suppressed” at the stage of drifts estimation 

with due regard for information about the models of noise 

and invariants. The technique proposed here for processing 

redundant measurements makes it possible to detect and to  

recognize random and gradual failures, and pre-fault 

conditions; to resist random failures and outliers by means of 

algorithmic reconfiguration and tuning of the loops that 

provide adaptive robust protection of the integrity of  the data 

processing systems.  
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