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ABSTRACT 
The lightweight structures are vulnerable to changeable surrounding. A perspective way to regulate their 
desired shape is to design them like layer composites and apply active vibration control. The paper deals 
with modeling, control design and numerical simulation of thin composite plates. The classical in bending 
is used based on the finite element modeling. The possible damages are introduced by equivalent reducing 
of the materials parameters. LQR and H2 control schemes are considered for vibration suppression. 
Numerical simulations of the impact response of thin composite structures are carried out. 
 
INTRODUTION 

Recently, many structures like plates are made from lightweight materials. They are vulnerable to 
external disturbances and considerable attention is paid to the investigation of their vibration 
control. The passive damping technique is not relevant for the lightweight structures. Active 
vibration damping has the advantage of potential weight and volume savings that makes noise 
reduction possible at a reasonable cost.  
This paper discusses modeling and investigation of the dynamical behaviour of damaged plates 
and active control for their vibration regulating. The choice of the control strategy for optimal 
performance and robustness against damage is important. The placement of the sensors and the 
control forces and its influence on the quality of the vibration regulating process governs the 
control process. Numerical simulations are carried out with the proposed controlled strategies. 

 
PLATE MODELING 

In the smart plate, the control actuators and the sensors are piezoelectric patches symmetrically 
bonded to the top and the bottom surfaces of the elastic host. The mechanical properties of the 
piezoelectric material, the viscose material and the host beam are independent in time. The linear 
theory of piezoelectricity is employed due to small structural vibrations. The equations are  
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 11 31 33z x zD Q d Eε ξ= +   (2) 
Equation (1) describes the inverse piezoelectric effect (actuator). Equation (2) describes the direct 
piezoelectric effect (sensor). The kinematical assumptions of the Euler-Bernoulli theory are used. A 
constant transverse electrical field is assumed for the piezoelectric layers.  
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Figure 1. A laminate composite structure  

The equation of motion for the plate is derived based on the classical Kirchhoff plate bending 
theory. One of the most important assumptions in this theory is that the transverse deformation is 
neglected.  
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Using Hamilton’s principle for classical finite element approximation, the discrete dynamics system 
is derived  
 em FFKXXDXM +=++ &&&  (3) 
Defects of the plate are modelled in a smeared-crack sense by reducing the stiffness and mass 
matrices of the corresponding finite element.  
For control purposes (3) is rewritten in the state space form 
 uBwBAxx 21 ++=& ,  (4) 
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OPTIMAL CONTROL DESIGN 

We consider a regulator type problem by means of a suitable feedback control law. Let the 
measured outputs y(t) are linear combinations of the system states. The objective is to determine the 
active control forces u(t) such that to reduce in an optimal way the response to the external 
excitations. The control is a linear combination of the outputs 

)()( tKytu =            (5) 
The problem for vibration suppression for flexible plates is solved for both linear quadratic 
regulator (LQR) and H2 optimal performance criteria. 
 
LQR CONTROL 

The following quadratic cost function is minimized 
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The control gain LQRK  is constant and has the form [4] 

   PBRK T
LQR 2

1−= ,           (7) 
where P is the positive solution of ARE 
This method ensures stability of the system and satisfactory suppression under proper choice of the 
design parameters. However, for limited number of available measurements and/or corrupted 
outputs, the most of LQR attractive properties are lost. In this case the more realistic H2 control 
strategy can be used. 
 
H2 CONTROL 

The measured output y is a linear combination of the states and is corrupted.  
         wDxCy 212 += .           (8) 
Let introduce a regulated output z that we are interested to control 
         uDxCz 121 += .           (9) 
The model (4),(6),(7) is suitable for H2 optimal control problem. The exogenous signals are fixed 
or have fixed power spectrum. The controller is in form (5) and keeps the regulated outputs z as 
small as possible despite the exogenous inputs w. The resulting, closed-loop transfer function 
from w to z is denoted by Tzw. 
An appropriate performance criterion for this purpose is H2 norm of zwT  that must be minimized 
over all controllers internally stabilizing the plant. The cost functional is  
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If X and Y are positive solutions of two ARE associated with the control problem  
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the unique controller 2K  satisfying the criterion (10) is given with the formula [5]. 

   ⎥
⎦

⎤
⎢
⎣

⎡

−
−−

=
02

22222
2 XB

YCCYCXBBAK T

TTT

       (11) 

The H2 control design technique provides robustness with respect to the disturbances.  
 

NUMERICAL INVESTIGATION 

For numerical investigations GUI within MATLAB has been prepared [6]. A square plate four with 
fixed foundaries is considered for numerical investigations. The ambient vibrations are excited by a 
concentrated instantaneous force applied in the vertical direction to the plate centre. Figure 2. 
shows the response of the centre and close to the damaged place. 
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a.       b. 

Figure 2: Vibration of two points of the plate with crack (solid) and without crack (dashed).  

The number and the position of the actuators are investigated. It is better to use less number of 
controllers if it is possible. The position of a restricted number of actuators must be suitably 
chosen. Numerical investigations are implemented under the assumption, that all states are 
available for measuring. The case when only a part of the whole state vector can be measured is 
as well considered.  
The two control strategies are applied for vibration suppression. The control forces act in vertical 
direction reducing the effect of the adverse vibrations. The response of the closed loop system is 
compared with the response of the open loop system with respect to the reduction of the 
maximum magnitude of the vertical displacement. Figure 3 displaces the results.  

 

a.        b.         c.   d 
Figure 3: Free vibration (solid) and LQR controlled response (dashed) of the centre of the plate. 

Figure 4 depicts 3D plot of the response of the uncontrolled and controlled plate calculated with 
H2 control strategy.  

   
   a.          b. 

Figure 4: Response of the uncontrolled a. and controlled b. plate in the same time 
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Figure 5 shows the response of the plate center under white noise loading.  

 
Figure 5: Deflections of the plate center due white noise: uncontrolled (dot) and H2 (solid) controlled  

Experiments made for the two controlled strategies with different groups of measured states show 
that if not all states are available for measurement better effectiveness is achieved if the transverse 
deflections are measured. 
 
CONCLUSIONS 

Computational methods for modeling and active regulating of composite plates are investigated. It 
illustrates optimal LQR and robust H2 control design techniques for a thin plate with piezoelectric 
and voscoelastic layers. The work presents the mathematical formulation and the computational 
model for the active vibration control of a composite plate in bending. Damages are modelled by 
reducing the stiffness and mass matrices of the defected element. The problem of active vibration 
control is studied using LQR and robust H2 optimal approaches. The influence of the number and 
placement of the controllers and sensors on the control design is investigated numerically. 
Computer simulations are given to demonstrate the research experience.  
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