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Abstract
A solution to the problem of active control and dis-

turbances compensation in vehicles suspensions is pro-
posed. It is shown that the suspension model satis-
fies differential flatness properties and the associated
flat output is a weighted sum of the system’s state vec-
tor elements. Differential flatness of the suspension’s
model enables transformation into a linear canonical
form for which it is possible to design a state feed-
back controller. Kalman filtering is used for estimating
the non-measurable elements of the suspension’s trans-
formed state vector through the processing of measure-
ments provided by a small number of on-board sensors.
Moreover, by reformulating the Kalman Filter as a dis-
turbance observer it is possible to simultaneously esti-
mate the external disturbances and the system’s trans-
formed state vector. The inclusion of an additional con-
trol term based on the disturbances estimation enables
to compensate for the disturbances’ effects and to at-
tenuate vibrations. The performance of the proposed
Kalman Filter-based active suspension control scheme
has been tested through numerical simulation experi-
ments.
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1 Introduction
In the recent years there has been systematic effort

towards designing vehicles of improved safety and
comfort and to this end the development of active
suspension control systems has been an important
research topic. One can note several results about
active suspension control systems exhibiting robust-
ness to external disturbance forces and being capable
of efficiently suppressing the vibrations induced to

the vehicle by these disturbances. H∞ controllers
have been developed taking into account worst case
disturbances on the suspension models [Yamashita
et al., 1994; Du and Zhang, 2007; Gao et al., 2010].
Moreover, there have been results on operating the
suspension’s control loop under limited information
provided by a small number of on-board sensors. This
can be seen in the case of developing some type of
state estimator or statistical filter to approximate the
nonmeasurable elements of the suspension’s state vec-
tor and the unknown disturbance forces. Particularly,
one can note the use of Linear Quadratic Gaussian
(LQG) control where Kalman Filtering is combined
with an optimal controller [Marzbanrada et al., 2004;
Harrison, 1994; Hrovat, 1990; Lee and Kim, 2010;
He and McPhee, 2005]. Moreover in [Hsiao et al.,
2011] the application of a sliding-mode controller
together with Kalman Filtering has been proposed
for implementing state estimation-based control of
the suspension’s model. Additionally, disturbance
observers have been used for simultaneous estimation
of the suspension’s state vector and of the unknown
external disturbances. The suitability of disturbance
observers for vibration control problems has been
shown in [Bagordo et al., 2011], while the efficiency
of disturbance estimators in vehicle control loops
and especially in the suspension control problem has
been demonstrated in [Beltran-Carbajal et al., 2011;
Sira-Ramirez et al., 2011; Koch et al., 2010a; Koch
et al., 2010b; Delvecchio et al., 2010; Delvecchio et
al., 2011]. Finally, a scheme of distributed Kalman
Filtering has been applied to disturbances and state
vector estimation for the suspension’s mechanism in
[Lee et al., 2012].

In this research work an approach to solve the problem
of active control of vehicle suspensions is developed
with the use of flatness-based controller and a Kalman
Filter-based disturbances estimator. The suitability of
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the Kalman Filter for state estimation in dynamic sys-
tems exhibiting vibrations has been shown in [Rigatos,
2012a]. In this paper, dynamic analysis for the vehi-
cle’s suspension model is first provided. Active vehicle
suspension control systems are underactuated and the
efficient suppression of disturbance inputs (e. g. due to
rough road surface) is important for attaining the per-
formance objectives of the control loop. The elements
of the state vector are variables denoting the displace-
ment of the sprung and unsprung masses from their
zero position and variables denoting the linear veloc-
ities of these masses. The control inputs to the model
are the force generated by the actuator placed between
the two masses (which aims at the suppression of vibra-
tions) and the unknown disturbance force that is gener-
ated due to contact of the tire with the road surface.
The model can take the form of a linear state space
equation. Moreover, by assuming nonlinearities in the
spring and damper terms of the suspension a nonlinear
dynamical model is obtained.
Next, it is shown how a controller for the aforemen-

tioned suspension model can be obtained through
the application of the differential flatness theory
[Fliess and Mounier, 1999; Rudolph, 2003; Villagra
et al., 2007; Tang et al., 2011]. The flat output for
the suspension’s model is a scalar variable which
is equal to the weighted sum of the elements of the
suspensions state vector. By expressing all state
variables and the control input of the suspension model
as functions of the flat output and its derivatives the
system’s dynamic model is transformed into the linear
Brunovksy (canonical) form [Sekhavat et al., 2001;
Lu et al., 2008]. For the latter model it is possible
to design a state feedback controller that enables
accurate tracking of the vehicle’s velocity set-points.
However, since measurements are available only for
certain elements of the transformed state vector, to
implement a state feedback control loop the rest of
the elements of the suspension’s transformed state
vector have to be estimated with the use of an observer
or filter. To this end the concept of Derivative-free
nonlinear Kalman Filtering is introduced. By avoiding
linearization approximations, the proposed filtering
method improves the accuracy of estimation of the
system’s state variables [Rigatos, 2008; Rigatos, 2010;
Rigatos, 2011].

A particular difficulty, in the case of the suspen-
sion model state estimation is the existence of the
unmodeled disturbance forces. It is shown that it is
possible to redesign the Kalman Filter in the form
of a disturbance observer and using the estimation
of the disturbance to develop an auxiliary control
input that compensates for the disturbances effects
[Cortesao et al., 2005; Cortesao, 2006; Chen et al.,
2000; Gupta and Malley, 2011; Miklosovic et al.,
2006]. In this way the suspension’s control system
can become robust with respect to uncertainties in the
model’s parameters or uncertainties about external

forces. It is also noted that in terms of computation
speed the proposed Kalman Filter-based disturbance
estimator is faster than disturbance estimators that
may be based on other nonlinear filtering approaches
(e. g. Extended Kalman Filter, Unscented Kalman
Filter or Particle Filter) thus becoming advantageous
for the real-time estimation of the unknown suspension
dynamics. The efficiency of the proposed control and
Kalman Filter-based disturbances estimation scheme
is evaluated through simulation tests. It has been
shown that the accurate estimation of the disturbance
forces which are exerted on the suspension enables
their efficient compensation. This is succeeded by
introducing an additional element in the controller
that produces a counter-disturbance input based on
the estimated value for the disturbance variable. This
control scheme finally results in minimizing the effects
of the disturbances on the vehicle’s parts.

The structure of the paper is as follows: in Section
2 the dynamic model of the vehicle’s suspension is
analyzed and state space representation is provided
for both the linear and the nonlinear case. In Section
3 it is proven that the vehicle suspension model is
differentially flat and this property is used to write the
model into a linear canonical form. Based on this latter
transformation an active suspension control system is
designed. In Section 4 the Kalman Filter is introduced
as an estimation approach suitable for reconstructing
the suspension’s transformed state vector using mea-
surements from a small number of sensors. In Section
5 the problem of state estimation under disturbances
is analyzed. The concept of the disturbance observer
is explained. In Section 6 it is shown how the Kalman
Filter can be redesigned in the form of a disturbance
observer so as to succeed simultaneous estimation of
the suspension’s transformed state vector and estima-
tion of the unknown disturbance forces exerted on the
suspension’s mechanism. In Section 7 evaluation tests
are provided about the suspension’s control scheme
and about the performance of the state estimator that
aims at real-time identification of uncertainty and
disturbances in the suspension’s dynamics. Finally, in
Section 8 concluding remarks are provided.

2 Dynamic Model of Vehicle Suspension
2.1 Dynamics of the 2-DOF Suspension
The suspension system is depicted in Fig. 1 and its

dynamics is written as

m1ẍ1 + c1(ẋ1 − ẋ2) + k1(x1 − x2) = f
m2ẍ2 + c1(ẋ2 − ẋ1) + k1(x2 − x1)+

+c2(ẋ2 − ζ̇) + k2(x2 − ζ) = −f
(1)

Variable x1 denotes the sprung mass displacement
while variable x2 denotes the unsprung mass displace-
ment. Tyre’s deflection ζ and its time derivatives
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ζ(i). i = 1, 2, · · · represent unknown external distur-
bance inputs due to road surface roughness and are as-
sumed to be bounded. The mass that needs regulation
is the sprung mass m1 which is also considered to be
larger than m2. The control force f is generated by an
actuator placed between the two masses (see Fig. 1).

Figure 1. An active vehicle suspension system where both the
sprung and the unsprung mass are connected to a spring and a
damper.

A normalization is performed to the model through the
following procedure: (i) the normalized time is defined

as τ = t
√

k1

m1
, (ii) the normalized input force is u =

f
k1

. The system constant coefficients are redefined as

ϵ = m2

m1
, γ1 = c1

m1

√
m1

k1
, γ2 = c2

m1

√
m1

k1
, κ = k2

k1
.

Thus, the dynamics model of the vehicle’s suspension
can be rewritten as

ẍ1 + γ1(ẋ1 − ẋ2) + (x1 − x2) = u
ϵẍ2 + γ1(ẋ2 − ẋ1) + (x2 − x1)+

+γ2(ẋ2 − ζ̇) + κ(x2 − ζ) = −u
y = x1

(2)

The model of Eq. (2) can be also written is state-space
form after defining the state variables z1 = x1, z2 =

ẋ1, z3 = x2, z4 = ẋ2. Thus one has


ż1
ż2
ż3
ż4

 =


0 1 0 0
−1 −γ1 1 γ1
0 0 0 1
1
ϵ

γ1

ϵ −1+κ
ϵ −γ1+γ2

ϵ



z1
z2
z3
z4

+

+


0
1
0
−1

ϵ

u+


0 0
0 0
0 0
κ
ϵ

γ2

ϵ

(ζζ̇
)

(3)
where all terms associated with disturbance ζ can be
represented by the new variable ∆. Thus one obtains

d
dτ xs = Axs +Bu+∆. (4)

2.2 A Nonlinear Model of Vehicle Suspension
Dynamics

The dynamical model of the two-degrees of freedom
vehicle suspension (see Fig. 2) is given as follows
[Sira-Ramirez et al., 2011]

msz̈s + Fsc + Fsk = FA

muz̈u − Fsk − Fsc + kt(zu − zr) = −FA
(5)

where FA is the force generated by the actuator, Fsk

is the force associated with the suspension’s spring
term, Fsc is the force associated with the suspension’s
damper term and Ft = kt(zu − zr) is a spring force
associated with elasticity coefficient kt and denoting
the spring-type behavior of the wheel when in contact
with the road’s surface.

It holds that

Fsk(zs, zu) = ks(zs − zu) + kns(zs − zu)
3 (6)

Fsc(zs, zu) = bs(żs − żu)+
+bns(żs − żu)

2sgn(żs − żu)
(7)

Denoting the state variables x1 = zs, x2 = żs, x3 =
zu, x4 = żu one has

ẋ1 = x2

ẋ2 = − 1
ms

[ks(x1 − x3) + kns(x1 − x3)
3+

+bs(x2 − x4) + bns(x2 − x4)
2sgn(x2 − x4)] +

1
ms
u

ẋ3 = x4

ẋ4 = − kt

mu
x3 +

1
mu

[ks(x1 − x3)+

+kns(x1 − x3)
3 + bs(x2 − x4)+

+bns(x2 − x4)
2sgn(x2 − x4)]− 1

mu
u+ kt

mu
zr

(8)
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Figure 2. An active suspension system.

where the term 1
mu
zr can be considered as a distur-

bance term. Denoting the nonlinear functions

f1(x, t) = − 1
ms

[ks(x1 − x3) + kns(x1 − x3)
3+

+bs(x2 − x4) + bns(x2 − x4)
2sgn(x2 − x4)]

(9)

g1(x, t) =
1
ms

(10)

f2(x, t) = − kt
mu

x3+
1

mu
[ks(x1−x3)+kns(x1−x3)3+

bs(x2 − x4) + bns(x2 − x4)
2sgn(x2 − x4)] (11)

g2(x, t) = − 1
mu

(12)

one has the following state-space description

ẋ1 = x2
ẋ2 = f1(x, t) + g1(x, t)u

ẋ3 = x4
ẋ4 = f2(x, t) + g2(x, t)u

(13)

3 Flatness-Based Control for a Suspension Model
3.1 Differential Flatness Theory
Differential flatness theory can be applied to the

generic class of systems ẋ = f(x, u). In this study,

the interest is in dynamic models of the form of Eq.
(14).

ẋ = f(x, t) + g(x, t)u (14)

The principles of differential flatness theory have
been extensively studied in the relevant bibliography
[Rudolph, 2003; Rigatos, 2010; Villagra et al., 2007]:
A finite dimensional system is considered. This can be
written in the form of an ordinary differential equation
(ODE), i. e. Si(w, ẇ, ẅ, · · · , w(i)), i = 1, 2, · · · , q.
The term w denotes the system variables (these
variables are for instance the elements of the sys-
tem’s state vector and the control input) while w(i),
i = 1, 2, · · · , q are the associated derivatives. Such
a system is said to be differentially flat if there
exists a set of m functions y = (y1, · · · , ym) of the
system variables and of their time-derivatives, i.e.
yi = ϕ(w, ẇ, ẅ, · · · , w(αi)), i = 1, · · · ,m satisfying
the following two conditions [Fliess and Mounier,
1999; Rigatos, 2008]:

1. There does not exist any differential relation of the
form R(y, ẏ, · · · , y(β)) = 0 which implies that the
derivatives of the flat output are not coupled in the
sense of an ODE, or equivalently it can be said that the
flat output is differentially independent.

2. All system variables (i. e. the elements of the
system’s state vector w and the control input) can be
expressed using only the flat output y and its time
derivatives wi = ψi(y, ẏ, · · · , y(γi)), i = 1, · · · , s.
An equivalent definition of differentially flat systems
is as follows:

Definition: The system ẋ = f(x, u), x∈Rn, u∈Rm is
differentially flat if there exist relations

h : Rn×(Rm)
r+1→Rm,

ϕ : (Rm)r→Rn and
ψ : (Rm)r+1→Rm

(15)

such that

y = h(x, u, u̇, · · · , u(r)),
x = ϕ(y, ẏ, · · · , y(r−1)), and
u = ψ(y, ẏ, · · · , y(r−1), y(r)).

(16)

This means that all system dynamics can be expressed
as a function of the flat output and its derivatives, there-
fore the state vector and the control input can be written
as

x(t) = ϕ(y(t), ẏ(t), · · · , y(r)(t)), and
u(t) = ψ(y(t), ẏ(t), · · · , y(r+1)(t))

(17)
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3.2 Classes of Differentially Flat Systems
For certain classes of dynamical systems it has been
proven that they satisfy differential flatness properties.
The following classes of nonlinear differentially flat
systems are defined [Martin and Rouchon, 1999;
Boudouen et al., 2011]:

1. Affine in-the-input systems: The dynamics of such
systems is given by:

ẋ = f(x) +
m∑
i=1

gi(x)ui. (18)

From Eq. (18) it can be concluded that the above
state equation can also describe MIMO dynamical
systems. Without loss of generality it is assumed
that G = [g1, · · · , gm] is of rank m. In case that the
flat outputs of the aforementioned system are only
functions of states x, then this class of dynamical
systems is called 0-flat. It has been proven that a
dynamical affine system with n states and n− 1 inputs
is 0-flat if it is controllable.

2. Driftless systems: These are systems of the form

ẋ =
m∑
i=1

fi(x)ui (19)

For driftless systems with two inputs, i. e.

ẋ = f1(x)u1 + f2(x)u2 (20)

the flatness property holds, if and only if the rank of
matrix Ek+1 := {Ek, [Ek, Ek]}, k≥0 with E0 :=
{f1, f2} is equal to k + 2 for k = 0, · · · , n− 2. It has
been proven that a driftless system that is differentially
flat, is also 0-flat.
Moreover, for flat systems with n states and n − 2

control inputs, i. e.

ẋ =

n−2∑
i=1

uifi(x) x∈Rn (21)

the flatness property holds, if controllability also holds.
Furthermore, the system is 0-flat if n is even.

3.3 A Flatness-Based Controller for the Vehicle
Suspension Model

It can be proven that the suspension model is differ-
entially flat by defining the following flat output [Sira-
Ramirez et al., 2011]

F =
(
0 0 0 1

)
C−1

o


z1
z2
z3
z4

 (22)

i. e. F = ϵ
κx1 −

ϵγ2

κ2 ẋ1 +
ϵκ−γ2

2ϵ
κ2 x2 − ϵ2γ2

κ2 ẋ2. where
Co stands for the system’s controllability matrix.

Co = [B,AB,A2B,A3B] (23)

It can be shown that all state variable of the system and
the control input can be written as functions of the flat
output and its derivatives. Indeed for the unperturbed
system, i. e. the model obtained from Eq. (22) if the
disturbance input ζ and its derivatives ζ̇ are ignored, it
holds

F = ϵ
κx1 −

ϵγ2

κ2 ẋ1 +
(ϵκ−γ2

2)ϵ
κ2 x2 − ϵ2γ2

κ2 ẋ2
Ḟ = ϵ

κ ẋ1 +
ϵγ2

κ x2 +
ϵ2

κ ẋ2
F̈ = −ϵx2
F (3) = ϵẋ2

(24)

while one also has

x1 = κ
ϵF + γ2

ϵ Ḟ + F̈

x2 = κ
ϵ Ḟ + γ2

ϵ F̈ + F (3)

x3 = −1
ϵ F̈

x4 = −1
ϵ F

(3)

(25)

and with the use of u = ẍ1 + γ1(ẋ1 − ẋ2) + (x1 −
x2) it can be also concluded that the control input is a
function of the flat output and its derivatives.
Taking also into account the effects of the disturbance

input ζ and of its derivative ζ̇ the flat output and its
derivative are formulated as follows

F = ϵ
κx1 −

ϵγ2

κ2 ẋ1 +
ϵκ−γ2

2ϵ
κ2 x2 − ϵ2γ2

κ2 ẋ2

Ḟ = ϵ
κx1 −

ϵγ2

κ2 x2 +
ϵ2

κ ẋ2 −
ϵγ2

κ ζ(τ)− ϵγ2
2

κ2 ζ̇(τ)

F̈ = −ϵx2 + ϵζ(τ) + ϵγ2(1− 1
κ )ζ̇(τ)−

ϵγ2
2

κ2 ζ̈(τ)

F (3) = −ϵẋ2 + ϵζ̇(τ) + ϵγ2(1− 1
κ )ζ̈(τ)−

ϵγ2
2

κ2 ζ
(3)(τ)
(26)

Differentiating one more time the flat output one ob-
tains

F (4) = −x1 − γ1ẋ1 + (1 + κ)x2+

+(γ1 + γ2)ẋ2 + u− κζ(τ)− γ2ζ̇(τ)+

+ϵζ̈(τ) + ϵγ2(1− 1
κ )ζ

(3)(τ)−
−ϵγ

2
2

κ2 ζ
(4)(τ)

(27)

Aggregating all terms other than u into one variable

ϕ(τ) = x1 − γ1ẋ1 + (1 + κ)x2 + (γ1 + γ2)ẋ2−
−κζ(τ)− γ2ζ̇(τ) + ϵζ̈(τ)+

+ϵγ2(1− 1
κ )ζ

(3)(τ)− ϵγ2
2

κ2 ζ
(4)(τ)

(28)
one has the system dynamics

F (4) = u+ ϕ(τ) (29)
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or equivalently, in state-space form


Ḟ1

Ḟ2

Ḟ3

Ḟ4

 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



F1

F2

F3

F4

+


0
0
0
1

(u+ ϕ(τ)
)

(30)
with the state variable Fi(τ), i = 1, · · · , 4 to stand
for the the (i − 1)-th order derivative F (i−1)(t) of the
flat output. The estimation of the term ϕ(τ) by a dis-
turbance observer enables to design a controller for the
vehicle’s suspension model as follows

u(τ) = F
(4)
d (τ)− k1(F

(3)(τ)− F
(3)
d (τ))−

−k2(F̈ (τ)− F̈d(τ))− k3(Ḟ (τ)− Ḟd(τ))−
−k4(F (τ)− Fd(τ))− ϕ̂(τ).

(31)

4 State Estimation with the Kalman Filter
4.1 The Continuous-Time Kalman Filter for the

Linear State Estimation Model

In the dynamic model of the suspension described
in Eq. (30) it is assumed that the measurable element
of the transformed state vector is F1, which can
be computed from the displacement and velocity
of the sprung and unsprung masses. Therefore, to
implement the state feedback control of Eq. (31)
it is necessary to estimate the non-measurable state
elements of the transformed state vector through some
filtering/estimation procedure. Moreover, the filter-
ing/estimation will be useful for identifying unknown
forces and torques exerted on the suspension.

In the continuous-time representation of the system’s
dynamics, the continuous-time Kalman Filter stands
for a state estimator of optimal accuracy. The following
continuous-time dynamical system is assumed [Kamen
and Su, 1999; Rigatos and Tzafestas, 2007]:{

ẋ(t) = Ax(t) +Bu(t) + w(t), t≥t0
z(t) = Cx(t) + v(t), t≥t0

(32)

where again x∈Rm×1 is the system’s state vector, and
z∈Rp×1 is the system’s output. Matrices A,B and
C can be time-varying and w(t),v(t) are uncorrelated
white Gaussian noises. The covariance matrix of the
process noisew(t) isQ(t), while the covariance matrix
of the measurement noise is R(t). Then the Kalman
Filter is again a linear state observer which is given by

˙̂x = Ax̂+Bu+K[z − Cx̂], x̂(t0) = x0

K(t) = PCTR−1

Ṗ = AP + PAT +Q− PCTR−1CP

(33)

where x̂(t) is the optimal estimation of the state vector
x(t) and P (t) is the covariance matrix of the state

vector estimation error with P (t0) = P0. It can be
seen that as in the case of the Luenberger observer, the
Kalman Filter consists of the system’s state equation
plus a corrective term K[z − Cx̂]. The associated
Riccati equation for calculating the covariance matrix
P (t) has the form given in the last row of Eq. (33).

4.2 The Discrete-Time Kalman Filter for the Lin-
ear State Estimation Model

In the discrete-time case the dynamical system is as-
sumed to be expressed in the form of a discrete-time
state model:{

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k)

z(k) = Cx(k) + v(k)

(34)
where the state x(k) is a m-vector, w(k) is a m-
element process noise vector and A is a m×m real
matrix. Moreover the output measurement z(k) is a
p-vector, C is an p×m-matrix of real numbers, and
v(k) is the measurement noise. It is assumed that the
process noise w(k) and the measurement noise v(k)
are uncorrelated.

Now the problem of interest is to estimate the state
x(k) based on the measurements z(1), z(2), · · · , z(k).
The initial value of the state vector x(0), the initial
value of the error covariance matrix P (0) is unknown
and an estimation of it is considered, i. e. x̂(0) = a
guess of E[x(0)] and P̂ (0) = a guess of Cov[x(0)].

For the initialization of matrix P one can set P̂ (0) =
λI with λ > 0. The state vector x(k) has to be es-
timated taking into account x̂(0), P̂ (0) and the output
measurements Z = [z(1), z(2), · · · , z(k)]T , i. e. there
is a function relationship:

x̂(k) = αn(x̂(0), P̂ (0), Z(k)) (35)

Actually, this is a linear minimum mean squares esti-
mation problem (LMMSE) which is solved recursively,
through the function relationship

x̂(k + 1) = an+1(x̂(k), z(k + 1)) (36)

The process and output noise are white and their
covariance matrices are given by: E[w(i)wT (j)] =
Qδ(i− j) and E[v(i)vT (j)] = Rδ(i− j).

Using the above, the discrete-time Kalman Filter
can be decomposed into two parts: i) time update,
and ii) measurement update. The first part employs
an estimate of the state vector x(k) made before
the output measurement z(k) is available (a priori
estimate). The second part estimates x(k) after z(k)
has become available (a posteriori estimate).
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When the set of measurements Z− =
{z(1), · · · , z(k − 1)} is available. From Z−

an a priori estimation of x(k) is obtained which
is denoted by x̂−(k) = the estimate of x(k) given
Z−.
When z(k) becomes available, the set of the output
measurements becomes Z = {z(1), · · · , z(k)},
where x̂(k) = the estimate of x(k) given Z.

The associated estimation errors are defined by

e−(k) = x(k)− x̂−(k) = the a priori error
e(k) = x(k)− x̂(k) = the a posteriori error (37)

The estimation error covariance matrices associated
with x̂(k) and x̂−(k) are defined as [Kamen and Su,
1999]

P−(k) = Cov[e−(k)] = E[e−(k)e−(k)T ]
P (k) = Cov[e(k)] = E[e(k)eT (k)]

The mean square error of the estimates can be found
by computing the trace of the estimation error covari-
ance matrices, i. e.

MSE(x̂−(k)) = tr(P−(k))
MSE(x(k)) = tr(P (k))

Finally, the linear Kalman filter equations in cartesian
coordinates are

measurement update:

K(k) = P−(k)C(k)T [C·P−(k)C(k)T +R(k)]−1

x̂(k) = x̂−(k) +K(k)[z(k)− Cx̂−(k)]
P (k) = P−(k)−K(k)C(k)P−(k)

(38)
time update:

P−(k + 1) = A(k)P (k)AT (k) +Q(k)
x̂−(k + 1) = A(k)x̂(k) +B(k)u(k)

(39)

The schematic diagram of the Kalman Filter (KF) loop
is given in Fig. 3.

4.3 The Extended Kalman Filter

State estimation can be also performed for nonlinear
dynamical systems using the Extended Kalman Fil-
ter (EKF) recursion. The following nonlinear model
is considered [Rigatos, 2010; Rigatos and Tzafestas,
2007]:

x(k + 1) = ϕ(x(k)) + L(k)u(k) + w(k)
z(k) = γ(x(k)) + v(k)

(40)

Figure 3. Schematic diagram of the Kalman Filter loop.

where x∈Rm×1 is the system’s state vector and
z∈Rp×1 is the system’s output, while w(k) and
v(k) are uncorrelated, zero-mean, Gaussian zero-mean
noise processes with covariance matrices Q(k) and
R(k) respectively. The operators ϕ(x) and γ(x) are
vectors defined as

ϕ(x) = [ϕ1(x), ϕ2(x), · · · ,ϕm(x)]T

γ(x) = [γ1(x), γ2(x), · · · , γp(x)]T , (41)

respectively. It is assumed that ϕ and γ are sufficiently
smooth in x so that each one has a valid series Taylor
expansion. Following a linearization procedure, ϕ is
expanded into Taylor series about x̂:

ϕ(x(k)) = ϕ(x̂(k)) + Jϕ(x̂(k))[x(k)− x̂(k)] + · · ·
(42)

where Jϕ(x) is the Jacobian of ϕ calculated at x̂(k):

Jϕ(x) =
∂ϕ

∂x
|x=x̂(k) =


∂ϕ1

∂x1

∂ϕ1

∂x2
· · · ∂ϕ1

∂xm
∂ϕ2

∂x1

∂ϕ2

∂x2
· · · ∂ϕ2

∂xm

...
...

...
...

∂ϕm

∂x1

∂ϕm

∂x2
· · · ∂ϕm

∂xm

 (43)

Likewise, γ is expanded about x̂−(k)

γ(x(k)) = γ(x̂−(k)) + Jγ [x(k)− x̂−(k)] + · · · (44)

where x̂−(k) is the estimation of the state vector x(k)
before measurement at the k-th instant to be received
and x̂(k) is the updated estimation of the state vector
after measurement at the k-th instant has been received.
The Jacobian Jγ(x) is

Jγ(x) =
∂γ

∂x
|x=x̂−(k) =


∂γ1

∂x1

∂γ1

∂x2
· · · ∂γ1

∂xm
∂γ2

∂x1

∂γ2

∂x2
· · · ∂γ2

∂xm

...
...

...
...

∂γp

∂x1

∂γp

∂x2
· · · ∂γp

∂xm

 (45)
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The resulting expressions create first order approxi-
mations of ϕ and γ. Thus the linearized version of the
system is obtained:

x(k + 1) = ϕ(x̂(k)) + Jϕ(x̂(k))[x(k)− x̂(k)] + w(k)
z(k) = γ(x̂−(k)) + Jγ(x̂

−(k))[x(k)− x̂−(k)] + v(k)
(46)

Now, the EKF recursion is as follows: First the time
update is considered: by x̂(k) the estimation of the
state vector at time instant k is denoted. Given initial
conditions x̂−(0) and P−(0) the recursion proceeds as:

Measurement update. Acquire z(k) and compute:

K(k) = P−(k)JT
γ (x̂−(k))·

·[Jγ(x̂−(k))P−(k)JT
γ (x̂−(k)) +R(k)]−1

x̂(k) = x̂−(k) +K(k)[z(k)− γ(x̂−(k))]
P (k) = P−(k)−K(k)Jγ(x̂

−(k))P−(k)
(47)

Time update. Compute:

P−(k + 1) = Jϕ(x̂(k))P (k)J
T
ϕ (x̂(k)) +Q(k)

x̂−(k + 1) = ϕ(x̂(k)) + L(k)u(k)
(48)

4.4 Compensating for Model Uncertainty with the
Use of the H∞ Kalman Filter

The Kalman Filter can be redesigned to cope with the
case of maximum errors of some linear combination
of states for worst case assumptions of process noise,
measurement noise and disturbances. This can be
useful in state estimation for the vehicle suspension
model, as a method for model uncertainty compensa-
tion. Filters designed to minimize a weighted norm of
state errors are called H∞ or minimax filters [Simon,
2006; Gibbs, 2011].

The discrete time H∞ filter uses the same state model
as the Kalman Filter, which has the form

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k)
z(k) = C(k)x(k) + v(k)

(49)

E[w(k)] = 0, E[w(k)w(k)T ] = Q(k)δij, E[v(k)] =

0, E[v(k)v(k)T ] = R(k)δij and E(w(k)v(k)
T
) = 0.

The update of the state estimate is again given by

x̂(k) = x̂−(k) +K(k)(z(k)− C(k)x̂−(k)) (50)

that minimizes the trace of the covariance matrix of the
state vector estimation error

J = 1
2E{x̃(k)T ·x̃(k)} = 1

2 tr(P
−(k)) (51)

where x̃−(k) = x(k) − x̂−(k) and P−(k) =
E[x̃−(k)T ·x̃−(k)]. The H∞ filtering approach defines
first a transformation

d(k) = L(k)x(k) (52)

where L(k)∈Rn×n is a full rank matrix. The use of
the transformation given in Eq. (52) allows certain
combinations of states to be given more weight than
others. Next, defining the estimation error variable
d̃1(i) = d(i) − d̂(i), the cost function of the H∞ filter
is initially formulated as

J(k) =
∑k−1

i=0 d̃(i+ 1)TS(i)d̃(i+ 1)/b

b = x̃−(0)TP−(0)−1x̃−(0)+

+
∑k−1

i=0 w
T (i+ 1)Q(i+ 1)−1w(i+ 1)+

+
∑k−1

i=0 v
T (i)R(i)−1v(i)

(53)

where Si is a positive-definite symmetric weighting
matrix. It can be observed that both matrices S(k) and
L(k) appear in the cost function and thus affect the so-
lution x̂−(k+1) of the optimization problem. The ob-
jective is to find state vector estimates x̂−(k) and x̂(k)
that keep the cost function below a given value 1/θ for
worst case conditions, i. e.

J(k) < 1
θ . (54)

By rewriting Eq. (53) and substituting Eq. (49) a mod-
ified cost functional is obtained

Ja(k) = − 1
θ x̃

−(0)
T
P−(0)x̃−(0) +

∑k−1
i=0 Γ(i)

Γ(i) =
(x(i+ 1)− x̂−(i+ 1))TWi(x(i+ 1)− x̂−(i+ 1))−
− 1

θ (w
T (i+ 1)Q(i+ 1)−1w(i+ 1)+

+(y(i)− C(i)x−(i))TR(i)−1(y(i)− C(i)x−(i)))
(55)

and

W (i) = L(i)TS(i)L(i) (56)

This cost function does not include the dynamic model
of the system given in Eq. (49) and this is added by
using a vector of Lagrange multipliers λ(i + 1). This
gives

J(k) = − 1
θ x̃

−(0)TP−(0)x̃−(0)+

+
∑k−1

i=0 (Γi + 2λ(i+1)T

θ )(A(i)x̂(i) +B(i)u(i)+

+w(i)− x(i+ 1)) + 2λ(0)T

θ x(0)− 2λ(0)T

θ x(0)
(57)

The cost function of the filter given in Eq. (57) can
be used as the basis for the solution. It is aimed to find
equations defining x̂−(k + 1), or equivalently a mea-
surement weighting matrix (similar to the Kalman gain
matrix), that minimize the cost for worst case assump-
tions about x(0), w(i) and y(i). Thus, the optimization
objective is formulated as

J∗(k) = min
xi

max
x(0),w(i),y(i)

J(k). (58)
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It is noted that the estimation algorithm has knowl-
edge of the output measurement y(i) but no knowledge
about the initial conditions of the system x(0) and the
process noise w(i). Under this assumption, the estima-
tion should be able to compensate for worst case values
for the unknown parameters. This is a game theoretic
problem that is solved in two steps.
In the first step of optimization, partial derivatives

of J(k) with respect to x(0), w(i) and λ(i) are set to
zero so as to maximize the cost function of Eq. (57),
now being dependant only on the terms x̂−(k + 1)
and y(k) which are included in Γi. In the second
step of optimization, the partial derivatives of J(k)
with respect to x̂−(k + 1) and y(k) are set to zero,
to obtain a condition for the filter’s gain matrix that
minimizes this cost functional. From the optimization
conditions ∂J(k)/∂x0 = 0T , ∂J(k)/∂w(i) = 0T ,
∂J(k)/∂λ(i) = 0T ones obtains an expression of J(k)
as function of x̂−(k + 1) and y(k). Next, from the
optimization conditions ∂J(k)/∂x̂−(i+ 1) = 0T , and
∂J(k)/∂y(i) = 0T one obtains the filter’s equations.

The recursion of the H∞ Kalman Filter can be
formulated again in terms of a measurement update
and a time update part

Measurement update:

D(k) = [I − θW (k)P−(k)+
+CT (k)R(k)−1C(k)P−(k)]−1

K(k) = P−(k)D(k)CT (k)R(k)−1

x̂(k) = x̂−(k) +K(k)[y(k)− Cx̂−(k)]

(59)

Time update:

x̂−(k + 1) = A(k)x(k) +B(k)u(k)
P−(k + 1) = A(k)P−(k)D(k)AT (k) +Q(k)

(60)
where it is assumed that parameter θ is sufficiently
small to maintain

P−(k)−1 − θW (k) + CT (k)R(k)−1C(k) (61)

positive definite. When θ = 0 the H∞ Kalman Filter
becomes equivalent to the standard Kalman Filter. It
is noted that apart from the process noise covariance
matrix Q(k) and the measurement noise covariance
matrix R(k) the H∞ Kalman filter requires tuning of
the weight matrices L and S, as well as of parameter θ.

5 Robust State Estimation with the Use of Distur-
bance Observers

5.1 Unknown Input Observers
To account for model uncertainties and external

disturbances, observer-based estimation has been

proposed, enabling to solve the problem of model
accuracy in reverse [Cortesao et al., 2005; Cortesao,
2006; Chen et al., 2000; Gupta and Malley, 2011;
Miklosovic et al., 2006]. This is done by modeling the
mechatronic or robotic system with an equivalent input
disturbance that includes unmodeled dynamics. An
observer is then designed to estimate the disturbance
in real time and provide feedback to cancel it.

The Unknown Input observer is applied to dynamical
systems of the form

ẋ = Ax+B(u+ we)
z = Cx

(62)

while the disturbance dynamics is given by

ḋ = Afd
we = Cfd

(63)

Then, the unknown input observer provides a state es-
timate of the extended state vector(

˙̂x
˙̂
d

)
=

(
A BCf

0 Af

)(
x̂

d̂

)
+

(
B
0

)
u+K(z−Cx̂) (64)

In the generic case one can assume that the distur-
bances vector we varies dynamically in time. However,
in several cases it suffices to assume a constant or
piecewise constant disturbance ẇe(z) = 0 where
Af = 0 and Cf = 1. The observer’s gain can be
obtained through the standard Kalman Filter recursion.

5.2 Perturbation Observer
The perturbation observer is an extension of the un-

known inputs observer which takes into account not
only external disturbances but also parametric uncer-
tainties. In discrete-time form, the system dynamics is
given by

xk+1 = Axk +Buk + wf

z = Cxk
(65)

while the disturbance dynamics is given by

dk = Afdk−1 +Bf (B
+(x̂k −Ax̂k−1)− uk−1)

ŵfk = Cfdk
x̂k+1 = Ax̂k +B(uk + ŵfk) + L(zk − Cx̂k)

(66)
whereB+ is the Moore-Penrose pseudo-inverse of ma-
trix B. The unknown input can represent external dis-
turbances and model uncertainties, i. e.

wf = we +∆Axk +∆Buk.
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5.3 Extended State Observer
The Extended State Observer uses a canonical form so

the unmodelled dynamics appear at the disturbance es-
timation part. The system’s description in the canonical
form is given by

x
(n)
1 = f(x, t, u, wf ) + bmu

z = x1

x =
(
x1 ẋ1 · · · x(n−1)

1

)T (67)


˙̂x1
· · ·
˙̂xn−1

˙̂xn
˙̂
f

 =


x̂2
· · ·
x̂n

f̂ + bmu
0

+K(x1 − x̂1) (68)

The Extended State Observer can be also modified to
take into account derivatives of the disturbance

x
(n)
1 = f(x, t, u, wf ) + bmu

z = x1

x =
(
x1 ẋ1 · · · x(n−1)

1

)T
F =

(
f ḟ · · · f (h−1)

)T (69)

and now the state and disturbance observer takes the
form

˙̂x1
· · ·
˙̂xn−1

˙̂xn
˙̂
F1

· · ·
˙̂
Fh−1

˙̂
Fh


=



x̂2
· · ·
x̂n

f̂ + bmu

F̂2

· · ·
F̂h

0



T

+K(x1 − x̂1) (70)

The latter form of the Extended State Observer
described in Eq. (70) enables to track various types of
disturbances. For example, h = 1 allows estimation
of disturbance dynamics defined by its first order
derivative, and h = 2 allows estimation of disturbance
dynamics defined by its second order derivative.

6 Estimation of Suspension Disturbance Forces
with Kalman Filtering

6.1 State Estimation with the Derivative-Free
Nonlinear Kalman Filter

Previous results about state estimation through trans-
formation to linear canonical forms can be found in

[Marino, 1990; Marino and Tomei, 1992; Rigatos,
2012b; Rigatos, 2012c; Rigatos, 2012d]. It was shown
that the dynamical model of the suspension can be writ-
ten in the MIMO canonical form of Eq. (30). Thus one
has a MIMO linear model of the form

ẏf = Afyf +Bfv
zf = Cfyf

(71)

where yf = [F1, F2, F3, F4]
T and matrices Af ,Bf ,Cf

are in the form

Af =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 Bf =


0
0
0
1

 CT
f =


1
0
0
0


(72)

where the measurable variables y1 = F is associated
with the displacement of the sprung and unsprung
mass in the suspension model. For the aforementioned
model, and after carrying out discretization of matrices
Af , Bf and Cf with common discretization methods
one can apply linear Kalman filtering using Eq. (38)
and Eq. (39). This is Derivative-free nonlinear
Kalman filtering for the model of the suspension which
is performed without the need to compute Jacobian
matrices and does not introduce numerical errors
due to approximative linearization with Taylor series
expansion.

6.2 Kalman Filter-Based Estimation of
Suspension Disturbance Forces

Considering the effects of disturbances on the sus-
pension’s model and after applying a transform on the
system’s state variables according to the differential
flatness theory it has been shown that the suspension
model is described by

F (4) = u+ ϕ(τ). (73)

The suspension’s state space model of Eq. (30) will
be extended to take into account also the dynamics
and the effects of the disturbance input ϕ(t). The ex-
tended state vector of the suspension model is defined
as z∈R8×1 with z1 = F , z2 = Ḟ , z3 = F̈ , z4 = F (3),
z5 = ϕ, z6 = ϕ̇, z7 = ϕ̈, z8 = ϕ(3). The dynamics of
the disturbance is assumed to be defined by its fourth
order derivative, i.e. ϕ(4) = fd(F, Ḟ , F̈ , F

(3)). Thus
one has the extended state-space model

ż = Ã·z + B̃·ṽ
q = C̃z

(74)
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with

Ã =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, B̃ =



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


, C̃T =



1
0
0
0
0
0
0
0


(75)

where the measurable variable is z1 and the control in-
put is

ṽ =
(
u, ϕ(4)

)T
. (76)

The disturbance estimator has the following structure

˙̂z = Ão·ẑ + B̃o·ṽ +K(z1 − ẑ1)

q̂ = C̃oŷ
(77)

where the estimator’s gain K∈R8×1 and matrices Ão,
B̃o and C̃o are defined as

Ão =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, B̃o =



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 0


, C̃T

o =



1
0
0
0
0
0
0
0


(78)

The disturbance estimator’s gain K∈R8×1 will be
computed through the Kalman Filter recursion.
Defining as Ãd, B̃d, and C̃d, the discrete-time

equivalents of matrices Ão, B̃o and C̃o respectively,
a Derivative-free nonlinear Kalman Filter can be
designed for the aforementioned representation of the
system dynamics [Rigatos, 2012b; Rigatos, 2012c;
Rigatos, 2012d]. The associated Kalman Filter-based
disturbance estimator is given by

measurement update:

K(k) = P−(k)C̃T
d [C̃d·P−(k)C̃T

d +R]−1

x̂(k) = x̂−(k) +K(k)[z(k)− C̃dx̂
−(k)]

P (k) = P−(k)−K(k)C̃dP
−(k)

(79)

time update:

P−(k + 1) = Ãd(k)P (k)Ã
T
d (k) +Q(k)

x̂−(k + 1) = Ãd(k)x̂(k) + B̃d(k)ṽ(k).
(80)

To compensate for the effects of the disturbance
forces it suffices to use in the control loop the modified

control input vector v1 = u− ϕ̂(t).

Remark 1: The contribution of the paper is in introduc-
ing a Kalman Filter-based disturbance observer within
a flatness-based control scheme. The Kalman Filter
enables simultaneous estimation of the nonmeasurable
elements of the suspension’s state vector and of the
external disturbances which are associated with the
tyre’s deflection due to the rough road surface. The
use of the Kalman Filter as disturbance estimator has
specific advantages: The Kalman Filter is an optimal
estimator for linear systems subjected to Gaussian
noise since it minimizes the trace of the estimation
error’s covariance matrix. This results in smooth
convergence of the estimated state vector to the real
state vector of the system and consequently in state
estimation-based control where the variations of the
control signal are also smooth. The selection of the
observation gain in the Kalman Filter is performed
through an adaptive procedure and can also cope with
time-varying dynamic models whereas in deterministic
state observers there should be explicit recomputation
of the observation gain in case of change of the
system’s dynamic model. Finally, the fast computation
features of the Kalman Filter make the method suitable
for estimating and compensating in real time the
disturbance terms that affect the suspension’s model.

Remark 2: The Kalman Filter can give additional
robustness with respect to model uncertainties and
parametric variations in the monitored system, if
redesigned in the form of a disturbance observer. It is
also possible to obtain other robust implementations
of the Kalman Filter, as for example the H∞ Kalman
Filter. However, when such a filter operates under
normal conditions (free of disturbances) its accuracy
of estimation may be inferior than the one of the
standard Kalman Filter [Gibbs, 2011; Simon, 2006].
The fast recursion of the Kalman Filter makes it
suitable for real-time applications. It has been proven
that in nonlinear estimation problems, the previously
analyzed derivative-free nonlinear Kalman Filter, is
faster than other nonlinear filters, such as the Extended
Kalman Filter, the Unscented Kalman Filter and the
Particle Filter [Rigatos, 2012c].

Remark 3: The problem of estimation and control
of unknown system dynamics and the problem of
disturbances compensation through the use of a
supplementary control term in the control loop can
be found in several research articles (see for example
[Amelin and Granichin, 2011; Bobtsov et al., 2011;
Landau et al., 2005; Landau et al., 2011a; Landau et
al., 2011b; Marino et al., 2008; Titov et al., 2011]).
The approach analyzed in the previous sections aims
at simultaneous estimation of the non-measurable
elements of the suspension’s state vector and at
compensation of the disturbance terms affecting the
suspension’s model [Cortesao et al., 2005; Delvec-
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chio et al., 2010; Koch et al., 2010b; Lee et al., 2012;
Rigatos, 2011]. Moreover, the approach on disturbance
estimation and compensation followed in the previous
sections is characterized by its efficiency in estimating
disturbance signals of multi-frequency content.

7 Simulation Tests
To evaluate the performance of the proposed Kalman

Filter-based and disturbances estimation scheme
for the vehicle’s suspension model simulation tests
were carried out. Different disturbance forces were
assumed to be exerted on the vehicle’s wheel due
to its contact with the rough road surface. The dis-
turbances dynamics was completely unknown to the
controller and their identification was performed in
real time by the disturbance estimator. The param-
eters of the suspension mechanism were as follows:
m1 = 2000Kg, m2 = 40Kg, K1 = 1.0 · 10e4 N/m,
K2 = 1.0 · 10e4 N/m, c1 = 1790 N ·s/m and
c2 = 20 N ·s/m. The control loop used for the
vehicle’s suspension is given in Fig. 4.

Figure 4. Control loop for the vehicle’s suspension comprising a
flatness-based nonlinear controller and a Kalman Filter-based distur-
bances estimator.

The monitored parameters were the state variables of
the suspension. The control input was the force gener-
ated by the actuator. The measured parameters were
the position and velocity of the sprung and unsprung
mass. The dynamics of the disturbance force was
assumed to be defined by its fourth-order derivative.
The extended state vector used by the disturbance
observer was of dimension x∈R8, where the first
four state variables were describing the suspension’s
model whereas the rest four state variables were
associated with the dynamics of the disturbance force.
The real-time estimation of the external disturbance

that was provided by the Kalman Filter was used
by an additional control term in the control loop to
generate a counter disturbance control input. Thus,
the disturbance’s effects on the vehicle’s parts were
eliminated and vibrations were efficiently suppressed.
As shown in Fig. 5 to Fig. 16 fast stabilization
of the suspension’s sprung and unsprung masses to
the desirable set-points was succeeded and accurate
estimation of the unknown disturbances forces was
performed. Moreover, is should be taken into account
that for common nominal values of k1 and m1 one
obtains t < τ i.e. t =

√
m1

k1
τ which finally gives the

real time scale of suspension’s active control system.
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Figure 5. Suspension control under disturbances profile 1: (a) Con-
vergence of sprung mass position x1 to the desirable setpoint, (b)
Convergence of sprung mass velocity x2 to the desirable setpoint.
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Figure 6. Suspension control under disturbances profile 1: (a) Con-
vergence of unsprung mass position x2 to the desirable setpoint, (b)
Convergence of unsprung mass velocity x4 to the desirable setpoint.

8 Conclusions
An active suspension control system has been designed
with the use of Kalman Filtering, aiming at reconstruct-
ing the suspension’s state vector out of measurements
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Figure 7. Suspension control under disturbances profile 1: (a) Es-
timation of the disturbance terms, (b) Control input generated by the
actuator.
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Figure 8. Suspension control under disturbances profile 2: (a) Con-
vergence of sprung mass position x1 to the desirable setpoint, (b)
Convergence of sprung mass velocity x2 to the desirable setpoint.
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Figure 9. Suspension control under disturbances profile 2: (a) Con-
vergence of unsprung mass position x2 to the desirable setpoint, (b)
Convergence of unsprung mass velocity x4 to the desirable setpoint.

provided by a limited number of sensors and at esti-
mating the unknown disturbance inputs exerted on the
wheel. First, dynamic modeling of the suspension has
been provided showing that the initial linear state-space
description of the suspension can take a nonlinear form
if nonlinearities in the spring and damper elements of
the mechanism are taken into account. Next, it has
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Figure 10. Suspension control under disturbances profile 2: (a) Es-
timation of the disturbance terms, (b) Control input generated by the
actuator.
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Figure 11. Suspension control under disturbances profile 3: (a)
Convergence of sprung mass position x1 to the desirable setpoint,
(b) Convergence of sprung mass velocity x2 to the desirable set-
point.

been shown that the suspension’s model is differen-
tially flat and that the flat output is a scalar resulting
from a weighted sum of the state vector elements. By
expressing all state variable and the control input of the
suspension model as a function of the flat output and
its derivatives, a linear canonical form of the suspen-
sion dynamics was obtained. For the latter model the
design of state feedback controller becomes possible.
As analyzed, the design of an active controller for the

suspension model with the use of state feedback re-
quires knowledge of all elements of the suspension’s
transformed state vector. The nonmeasurable elements
can be estimated through the Kalman Filter-based pro-
cessing of sensor readings from the measurable ele-
ments. An additional difficulty in the estimation prob-
lem comes from the fact that unknown disturbance
forces are exerted on the suspension and these can
cause divergence of the filtering procedure. Filtering
under model uncertainties and external disturbances is
obtained by redesigning the Kalman Filter in the form
of a disturbance observer. This enables simultaneous
estimation of the suspension’s state vector and identifi-
cation of the unknown disturbance forces.
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Figure 12. Suspension control under disturbances profile 3: (a)
Convergence of unsprung mass position x2 to the desirable setpoint,
(b) Convergence of unsprung mass velocity x4 to the desirable set-
point.
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Figure 13. Suspension control under disturbances profile 3: (a) Es-
timation of the disturbance terms, (b) Control input generated by the
actuator.

It has been also shown that once an estimation of the
unknown disturbance inputs is obtained their effect can
be compensated by an additional element that is in-
cluded in the control loop. This new control input
stands for a counter-disturbances signal that is based
on the estimated value of the disturbance forces and
which finally enables the elimination of vibrations in
the vehicle’s parts. The performance of the proposed
Kalman Filter-based active control scheme for vehicle
suspensions has been tested through numerical simu-
lation experiments. Yet simple in concept the use of
a disturbance estimator in the control loop can com-
pensate efficiently for the disturbances and model un-
certainties effects, thus improving also significantly the
functioning of the suspension’s mechanism.
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Figure 14. Suspension control under disturbances profile 4: (a)
Convergence of sprung mass position x1 to the desirable setpoint,
(b) Convergence of sprung mass velocity x2 to the desirable set-
point.
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