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Abstract
A reconstruction of the velocity field is of current in-

terest for different theoretical and practical problems. In
the presented work the optimization method of the veloc-
ity field construction for successive images is developed
and generalized using the concepts of trajectory beam
(an ensemble of trajectories), a distribution density func-
tion (brightness), and a quality functional. A new formu-
lation of the problem is proposed with the splitting of the
initial image to subsets and taking into account a tempo-
ral variation.

Analytical expressions of the variation and gradient
of the investigated functional are given, allowing one to
construct various directed optimization methods. The
proposed approach can be used for determining the
velocity field within different tasks, particularly, for the
problems of diagnostic image processing.
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1 Introduction
A problem of the velocity field reconstruction ap-

pears when solving many theoretical and applied tasks.
There are physical experimental problems, investiga-
tions of complex mechanical systems, problems of elec-
trodynamics and so on. Concerning image processing
tasks the given problem is known as the problem of
optical flow construction for successive images [Horn
and Schunck,1981; Lucas and Kanade, 1981; Anan-
dan, 1989; Fleet and Weiss, 2005; Papenberg, et.al.,
2006]. Images processing and analysis including deter-

mining the velocity field are actual for medical diagnos-
tics, robotics, computer vision, which includes methods
of tracing objects in digital images, space researches, in-
vestigations of the arctic ice movement, as well as an
analysis of transport flows [Kotina, Ploskikh and Shi-
rokolobov, 2022; Gecha, et.al., 2020; Kopenkov and
Myasnikov, 2014].

Different approaches are known from publications and
widely used in practice [Barron and Fleet, 1994; Bruhn,
Weickert and Schnorr, 2005; Sun, Roth and Black, 2010;
Tu, et.al., 2019]. In the current work the problem of con-
structing the velocity field is considered as control and
optimization problem [Ovsyannikov, 1980; Bazhanov, et
al., 2018; Kotina and Ovsyannikov, 2021].

In our previous works [Ovsyannikov and Kotina, 2012;
Kotina and Pasechnaya, 2015; Bazhanov, et al., 2018;
Ovsyannikov and Kotina, 2012; Kotina, Leonova and
Ploskikh, 2022] the problem of determining the veloc-
ity field was considered on the basis of continuous as
well as discrete systems, particularly, for radionuclide
medical images. In the current work, the problem of de-
termining the velocity field is generalized on the basis of
systems with continuous right part using fragmentation
of an image to subareas and time variation. Analytical
representations of a variation and a gradient of the mini-
mized functional are given.

2 Problem statement
A problem of the velocity field reconstruction for a

complex structure is investigated. Let a set M0 ⊂ Rn,
let us consider sets having nonzero Lebesgue measure
M i

0, i = 1, N , such that⋃
i

M i
0 ⊂M0, M

i
0

⋂
i ̸=j

M j
0 = ⊘.
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We assume that the velocity field for every M i
0 subset, is

determined by a separate system of differential equations

ẋ = f(t, x, ui), i = 1, N. (1)

Here t is a time, t ∈ [0, T ], x is a vector of spatial coordi-
nates, x ∈ Rn, ui is a vector of parameters, ui ∈ U , U is
a compact inRr, f = f(t, x, ui) is a n-dimensional vec-
tor function, continuous with its partial derivatives ∂f

∂x ,
∂ divx f

∂x , (divx f =
∑n

i=1
∂fi
∂xi

), with respect to the all
arguments.

For every system (1) initial conditions are given

xi(0) = xi0 ∈M i
0, i = 1, N, (2)

where M i
0 is a set of initial values for the corresponding

i for the system (1). We denote solutions of the system
(1) with initial conditions (2) as

xit = xi(t) = x(t, xi0, u
i), xi0 ∈M i

0,

i = 1, N.
(3)

We will refer to the set of this solutions with every i as
a trajectory beam (or a beam), where trajectories outgo
from the M i

0 set with a given parameter vector ui.
For every i (i = 1, N ) we will introduce the den-

sity distribution function ρi = ρi(t, x), which plays a
role of mass or charge density distribution in different
tasks of mechanics and electrodynamics. It also may
be considered as quantitative characteristics of an im-
age (a brightness) depending on spatial coordinates and
a time, or density of radiopharmaceutical when data of
radionuclide studies are processed [Kotina and Ovsyan-
nikov, 2018].

Liouville (transport) equation, which determines a
variation of the density function in space over time
when vector function f(t, x, ui) is given, has the form
[Ovsyannikov, 1980; Brockett, 2007]:

∂ρi(t, x)

∂t
+
∂ρi(t, x)

∂t
f(t, x, ui)+

+ρi(t, x) divx f(t, x, u
i) = 0.

(4)

For this equation, the initial conditions are set:

ρi(0, x) = ρi0(x), x ∈M i
0, (5)

where ρi0(x) are the given functions, i = 1, N . For every
i we assume that ρi = ρi(t, x) function is given and it
is necessary to reconstruct f(t, x, ui) functions, in which
parameters ui1, u

i
2, . . . , u

i
r are considered to be unknown.

So, we have to determine N parameter vectors ui, i =
1, N .

Let us consider a problem of ui parameter vectors
reconstruction as an optimization task. For this pur-
pose we will use optimization methods for charged par-
ticle beams dynamics presented in [Ovsyannikov, 1980;
Ovsyannikov, 1990].

We denote a trajectory beam cross-section of system
(1) at timepoint t for the fixed ui vector as M i

t,ui , i.e.,
the set

M i
t,ui =

{
xi(t) = x(t, xi0, u

i), xi0 ∈M i
0

}
,

i = 1, N.
(6)

Let ρ0(x) be known density distribution at timepoint
t = 0 in M0, while ρi0(x) is a narrowing of the given
function in the M i

0 set. Then we assume that we know
the density ρ̂(x), x ∈ Rn, characterizing the density
changed in time ∆t. We denote the timepoint as T =
∆t.

The task is to find such ui parameter vectors that at
the timepoint T the density calculated using equation (4)
under the condition of (5) is equal to the ρ̂(x) density in
M i

T,ui , i.e.

ρi(T, x) = ρ̂(x), x ∈M i
T,ui , i = 1, N. (7)

Let us formulate the optimization problem. For this
purpose, we introduce a functional

J(u) =

N∑
i=1

∫
Mi

T,u

g(xT , ρ
i(T, xT )) dxT , (8)

here u is a vector composed from vectors ui, u =
(u1, u2. . . , uN ), M i

T,ui is a trajectory beam cross-
section at the timepoint t = T , g = g(xT , ρ

i(T, xT )) is
a non-negative, continuously differentiable function with
respect to the all arguments, characterizing the condition
(7) in one form or another.

The problem of functional (8) minimization is stated.
We assume that the timepoint T is not fixed here and will
be varied as well.

Solving functional (8) minimization task and determin-
ing parameter vector u we solve the task of f(t, x, ui),
i = 1, N , functions restoring, i.e., we determine the ve-
locity field for the all subdomains.

3 Functional gradient
An increment of the functional has a following form

∆J = δJ + o(∥u∥+ |∆T |),

where ∥u∥ is a vector norm.
Following the work [Ovsyannikov, 1990] let us present

the functional (8) variation in the form

δJ = −
N∑
i=1

∫ T

0

∫
Mi

T,ui

(ψi∗(t, xt)∆uif(t, xt, u
i)+

+λi(t, xt)∆ui divx f(t, xt, u
i)) dxtdt−

−∆T

N∑
i=1

∫
Mi

T,ui

Hi(T, xT , λ
i(T, xT ), ψ(T, xT ), u

i) dxt.

(9)
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Here

Hi = ψi∗(T, xi(T ))f(T, xi(T ), ui)+

+λi(t, xi(T )) divx f(t, x
i(T ), ui).

Auxiliary functions ψi(t, x) and λi(t, x) for i = 1, N
satisfy equations along trajectories of the system (1)

dψi

dt
= −(

∂f(t, xi(t), ui)

∂x
+

+E divx f(t, x
i(t), ui))∗ψi−

−λi(∂ divx f(t, x
i(t), ui)

∂x
)∗,

(10)

dλi

dt
= −λi divx f(t, xi(t), ui) (11)

under the final conditions

ψi∗(T, xi(T )) = −∂g(x
i(T ), ρi(T, xi(T ))

∂x
, (12)

λi(T, xi(T )) = −g(xi(T ), ρi(T, xi(T )))+

+
∂g(xi(T ), ρi(T, xi(T ))

∂ρ
ρi(T, xi(T )).

(13)

Meanwhile

∆uif(t, xt, u
i) = f(t, xt, u

i +∆ui)− f(t, xt, u
i),

∆ui divx f(t, xt, u
i) = divx f(t, xt, u

i +∆ui)−
−divx f(t, xt, u

i).

The derivation of the variation (9) is based on the
use of a trajectory beams cross-sectional transformation
[Ovsyannikov, 1980; Ovsyannikov, 1990] applying vari-
ation equations for equations (1), (4).

Based on the above considerations and the presenta-
tion of the variation (9) we can formulate the following
theorem.

Theorem.
Let function f be differentiable with respect to ui, U

is a convex set. Then the expressions for the gradient
components of the functional (8) has the form

∂J

∂ui
= −

∫ T

0

∫
Mi

T,ui

(ψi∗(t, xt)
∂f(t, xt, u

i)

∂u
+

+λi(t, xt)
∂ divx f(t, xt, u

i)

∂u
) dxtdt,

(14)

∂J

∂T
=

= −
N∑
i=1

∫
Mi

T,ui

H(T, xT , λ
i(T, xT ), ψ

i(T, xT )) dxT ,

(15)

i = 1, N.

The obtained equations (14)-(15) can be used to im-
plement the optimization algorithm of the velocity field
reconstruction. On the basis of the functional gradient
equation one can build different methods for a directed
search of the parameter vector u.

4 Linear model
Obviously, when processing images, f(t, x, ui) func-

tions form is unknown. Let us consider function f as a
linear vector function, i.e.

ẋ = Aix+ Ci, i = 1, N, (16)

whereAi are square matrices: Ai =
{
ailm

}n

l,m=1
,Ci are

vectors: Ci =
{
cik
}n

k=1
. The parameter vector ui con-

sists of matrix Ai and vector Ci components. Finding
this components determine the system (16) and thereby
gives us the required velocity field.

Let us further assume n = 2 that corresponds to planar
images. Then the system (16) is a system of linear dif-
ferential equations of the second order. As function g in
functional (8) we consider the function

g = (ρi(T, xi(T ))− ρ̂(xi(T )))2, (17)

where ρ̂(x) is a known density in R2.
It should be noted that generally a problem formulation

suggests a possibility of density (brightness) distribution
change along the trajectories of the system (1) [Ovsyan-
nikov and Kotina, 2012]. On the basis of equations (1),
(4), this changes can be presented as follows

ρi(t, xi(t, xi0, u
i)) = ρi0(x

i
0)e

−
∫ t
0
divx f(τ,xi,ui) dτ .

We write a functional (8) gradient with respect to re-
quired parameters for a linear case and the function g
given by formula (17)

∂J

∂aikk
= −

∫ T

0

∫
Mi

T,ui

[ψi
kxk + λi] dxtdt,

k = 1, 2,

(18)

∂J

∂aikj
= −

∫ T

0

∫
Mi

T,ui

ψi
kxj dxtdt,

i ̸= j, k, j = 1, 2,

(19)

∂J

∂cik
= −

∫ T

0

∫
Mi

T,ui

ψi
k dxtdt,

k = 1, 2,

(20)
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∂J

∂T
= −

N∑
i=1

∫
Mi

T,ui

[(ai11x1 + ai12x2 + ci1)ψ
i
1+

+(ai21x1 + ai22x2 + ci2)ψ
i
2+

+λi(ai11 + ai22)] dxT .

(21)

Equations (10) and (11) have the following form

dψi

dt
= −[Ai + E(ai11 + ai22)]

∗ψi, (22)

dλi

dt
= −(ai11 + ai22)λ

i (23)

with final conditions

ψi∗(T, xi(T )) = −2(ρi(T, xi(T ))− ρ̂(xi(T )))×

×(
∂ρi(T, xi(T )

∂x
− ∂ρ̂(xi(T ))

∂x
),

(24)

λi(T, xi(T )) = ρi(xi(T ))2 − ρ̂(xi(T ))2. (25)

In formulas (18) - (25) i changes from 1 to N (i =
1, N ).

In the case of an optical flow, we have
divx f(t, x, u

i) = 0, therefore, within the linear
model the equality ai11 = −ai22 has to be fulfilled for all
i.

Then the equation (18) will be considered only for k =
1. The equations (19) and (20) remain unchanged, while
the equation (21) is reduced to the following

∂J

∂T
= −

N∑
i=1

∫
Mi

T,ui

[(ai11x1 + ai12x2 + ci1)ψ
i
1+

+(ai21x1 − ai11x2 + ci2)ψ
i
2] dxT .

Meanwhile the equation (22) takes a form

dψi

dt
= −Ai∗ψi

with the final condition (24).
In this case it is following from the equation (23), that

λi is equal to a constant and can be calculated using the
formula (25). Thus, when considering only the optical
flow one can obtain simpler calculation formulas and a
number of unknown parameters is reduced.

5 Conclusion
The approach proposed in the article gives us new op-

portunities to construct the velocity field for the case of
an optical flow, as well as for the case of a non-optical
flow. Within the proposed approach the set M0 is split
to subsets. It is due to difficulties of determining the ve-
locity field given by a single system in the whole area,
since the given velocity field may be essentially nonlin-
ear. Splitting the set to subsets we have an ability to

obtain the velocity field determined by a separate system
for every subset, that can essentially simplify a solution
process for the given task. In particular, an ability to use
the linear model more effectively appears. Splitting to
subsets allows one to point out significant image areas
and to search the corresponding velocity field for each
of them.

Note, that in this work the difference between systems
(1) consists only in the vector ui selection. However,
systems (1) can be different for different subsets, i.e.,
not only parameter vector selection can be different, but
also a form of function f . Then instead of the f(t, x, ui)
function one should consider the f i(t, x, ui) function in
all corresponding formulas.

An application of the described algorithm can be useful
for different image processing fields, such as movement
detection and its correction, tracing movement trajec-
tory, constructing contours on an image, analyzing im-
ages and so on. Given approach is of a particular interest
for processing radionuclide research data [Ovsyannikov,
Kotina and Shirokolobov, 2013; Ploskikh and Kotina,
2021; Kotina, Ploskikh and Shirokolobov, 2022], for ob-
taining visual as well as quantitative information when
diagnostic images are analyzed.
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