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Abstract
The study of spectra of Laplacian matrices is impor-

tant in decentralized optimization and multi-agent con-
trol problems. Namely, the largest and the smallest non-
zero eigenvalues significantly affect both the stability of
decentralized algorithms and their convergence rate. In
this paper, we study the Laplacian spectra of some ba-
sic graphs and hierarchical graphs obtained from them.
Explicit expressions for the eigenvalues of interest are
given and analyzed.
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1 Introduction
Decentralized approaches to control and optimization

in complex systems consisting of autonomous subsys-
tems (or agents) are an active research topic and have
many practical applications. The idea of interactions of
this kind, alternative to the classical “centralized” ap-
proach, is to achieve a global goal through local inter-
actions, see [Proskurnikov and Fradkov, 2016], [Chen
et al., 2019], [Bullo, 2022] and references therein. In
a centralized system, one central agent that has access
to all information about the system makes decisions for
all agents. In this way, the decision to cooperate in the
system is obtained directly and all interactions are opti-
mally taken into account. The basic features of multi-
agent systems are autonomy of agents, local interac-
tions between them without the use of global informa-
tion about the system as a whole, and decentralization,
i.e., the absence of a central regulator or module produc-
ing common solutions for all agents. Multi-agent control
protocols find their application in many tasks of cyber-
physical systems that bring together sensing, computa-

tion, control, and networking. In particular, such decen-
tralized controllers are used in the problems of formation
control and vehicle platooning.

The flexibility and cost-effectiveness of decentralized
solutions compared to the classical centralized ones have
led to the widespread application of multi-agent systems
in various fields of science and industry, as well as to
the rapid development of the corresponding mathemati-
cal theory.

In a multi-agent system, each agent interacts only with
a limited number of neighbors, so it is convenient to
describe the pattern of such interactions by means of
a graph. In both decentralized optimization problems
and decentralized control problems, such basic prop-
erties of the system as its stability and convergence
rate depend on the spectrum of the Laplacian matrix
of the graph (see, e.g., [Borrelli and Keviczky, 2008],
[Nedić et al., 2018], [Granichin et al., 2020], [Zhu et al.,
2022], [Gorbunov et al., 2022], [Erofeeva and Kizhaeva,
2023], [Uzhva and Granichin, 2021], [Amelin and Er-
shov, 2021]). For a particular graph, it is not difficult to
find the spectrum, but if we consider graphs constructed
in some regular way, for example, by repeating the same
fragment, the problem of exact computation or localiza-
tion of spectra turns out to be nontrivial. In this direc-
tion, there are studies devoted to obtaining expressions
for the Laplacian spectra of undirected topologies, in-
cluding various lattices [Pozrikidis, 2014], hierarchical
small-world networks [Liu et al., 2015], products [Kam-
merdiner et al., 2017] and coronas of graphs [Barik and
Sahoo, 2017], and many others. In the paper, we find ex-
plicit expressions and analyze the behavior of the largest
and smallest nonzero eigenvalues of the Laplacian ma-
trices of certain undirected hierarchical graphs.

The paper is organized as follows. The preliminary in-
formation and problem statement are given in Section 2.
Basic graph topologies are described and studied in 3,
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followed by hierarchical ones given in Section 4. In Sec-
tion 5, we analyze and discuss the results obtained in
terms of stability and convergence rate of network dy-
namics problems. Section 6 concludes the paper.

2 Preliminaries and Problem Statement
In this paper, we study certain basic and hierarchi-

cal networks that have scalable structure and Laplacian
spectra of the corresponding graphs. After introducing
the terminology, we formulate the problem.

Throughout the paper, we consider finite unweighted
graphs without multiple edges and loops. A graph is de-
noted by GN = (V, E), where V = {1, . . . , N} stands
for the node set and E for the set of edges.

The formal definition of the Laplacian matrix of an un-
weighted graph GN is given below.

Definition 1. The Laplacian matrix LN ∈ RN×N of GN

is the matrix with entries lij given by

lij =


−1 if (i, j) ∈ E ,
di if i = j,

0 otherwise,

where di is the degree of the ith vertex.

Denote the eigenvalues of Laplacian matrix LN by
λ1, . . . , λN . It is known that if graph GN is connected,
then λmin = 0 and all other eigenvalues of L are in the
open right half of the complex plane (see, e.g., [Lewis
et al., 2013]). We define an eigenvalue with the max-
imum value as λmax, and the smallest non-zero eigen-
value as λ+

min.

Definition 2. The circulant matrix CN is a Toeplitz ma-
trix having the form

CN =


c1 c2 · · · cN
cN c1 · · · cN−1

...
...

. . .
...

c2 c3 · · · c1

 (1)

with the rows formed by the vector c = [c1, c2, . . . , cN ]
and its N − 1 circular permutations.

We define such matrices as circ(·); i.e.,

CN := circ(c).

2.1 Motivation
The spectrum of Laplacian matrices is important in es-

timating the convergence rate of decentralized optimiza-
tion methods, as well as for the analysis of consensus
reachability and convergence rate to consensus in multi-
agent systems. In the following, we provide the main
motivations for studying Laplacian spectra from the per-
spectives of decentralized optimization and control.

2.1.1 Decentralized Optimization. Consider a
network system of N nodes connected through an undi-
rected graph GN referred to as the network topology.
Each node i ∈ V has a local objective function fi(x) that
depends on the optimization variable x. The objective is
to find a minimizer x⋆ of the global objective function
F (x) defined as

F (x̄) =

N∑
i=1

fi(xi), s.t. x1 = . . . = xN , (2)

where x̄ = [x1, . . . ,xN ]⊤.
We consider a common decentralized optimization

workflow: Each node maintains its own optimization
variable, which is repeatedly updated and aligned with
its neighbors to obtain a solution that minimizes the
global objective function. Specifically, at iteration t =
0, 1, 2, . . ., node i updates its optimization variable as
follows:

x
(t+1)
i = x

(t)
i − Optimize(x(t)

i )− Consensus(W,x
(t)
i ).
(3)

Here, Optimize(x(t)
i ) is an optimization step,

i.e., gradient descent iteration at the point x
(t)
i ;

Consensus(W,x
(t)
i ) is a procedure that maintains the

equality constraint in (2). The consensus involves the
information exchange with the neighboring nodes, i.e.
Vi = {k ∈ V : (k, i) ∈ E}, through the network
topology with the corresponding communication matrix
W represented by a mixing matrix or Laplacian matrix
(see [Gorbunov et al., 2022] for more details).

As presented in [Gorbunov et al., 2022], the conver-
gence depends on the spectral properties of the underly-
ing communication matrix:

• when W is a mixing matrix, consensus scheme
x̄(t+1) = Wx̄(t) requires O

(
1

1−λ2(W) log(
1
ε )
)

it-
erations to achieve accuracy ε;

• when W is a Laplacian matrix, the consensus
scheme achieved through the optimization of the
objective function x̄⊤Wx̄, e.g., x̄(t+1) = x̄(t) −

1
λmax

Wx̄(t), requires O
(

λmax(W)

λ+
min(W)

log( 1ε )
)

itera-
tions to achieve accuracy ε.

In this paper, we analyse how the iteration complexity
scales with the number of nodes N through the proper-
ties of the communication matrix W represented by the
condition number χ = λmax(W)

λ+
min(W)

.

2.1.2 Multi-Agent Systems. The eigenvalue λ+
min

determines the exponential rate of convergence in first-
order linear multi-agent systems with dynamics of the
form

ẋ = −LNx, (4)
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where x = [x1, x2, . . . , xN ]⊤, xi(t) ∈ R is the posi-
tion of each agent at time t ≥ 0, i ∈ {1, . . . , N}. The
matrix LN is the Laplacian of the corresponding graph
of communications. Thus, the equation of dynamics of
each agent has the form of a first-order equation (single
integrator), the right-hand side of which is a feedback
in terms of deviations from the states of its neighboring
agents.

When the agent models are of order two or higher, it is
not enough to achieve consensus for the graph to be con-
nected or for the zero eigenvalue of the Laplacian matrix
to be simple. In such cases, it is checked whether all
non-zero eigenvalues of the Laplacian matrix belong to
the so-called consensus region or not, see [Polyak and
Tsypkin, 1996], [Hara et al., 2014], [Lewis et al., 2013],
[Proskurnikov and Fradkov, 2016], [Li and Duan, 2017].
Since in the case of undirected graphs we deal with
real spectra, it is important for us to find the endpoints
λ+
min, λmax and check if the segment [λ+

min, λmax] lies
in the consensus region or not. Hereafter in the text,
∆ = λmax − λ+

min denotes the length of such a segment.
In case of higher-order agents (e.g., in formation con-

trol problems), the following situation may arise: If the
number of agents in the platoon increases, the spectrum
of the new Laplacian matrix is no longer located in the
consensus region. This phenomenon is referred to as
eventual instability [Stüdli et al., 2017]. An example of
such stability loss is shown in [Parsegov et al., 2023].

2.2 Problem Statement
The goal of this paper is to study the behavior of the

largest and smallest nonzero eigenvalues of the Lapla-
cian matrices of specific undirected unweighted graphs,
as well as a comparative analysis of the behavior of λ+

min

and λmax.
The following connected basic graphs are considered

in this paper: cycle graphs, path graphs, rectangular lat-
tices, stars and wheels. Each of such graphs has the
scalability property, i.e., increasing the number of nodes
does not change the overall graph nature. In addition,
based on the basic graphs, we introduce the hierarchy
and construct the corresponding graphs.

By hierarchical network we define a two-layer net-
work involving interactions both between the agents
within a subgroup and between the groups. The corre-
sponding graph obtained as the Cartesian product of the
subgroup graph and the subgroup interaction graph we
also refer to as hierarchical.

3 Basic Topologies
Let us introduce some additional definitions necessary

for further explanation.

Definition 3.

1. The cycle graph is a graph containing a single cy-
cle through all nodes. It can be also defined as a

connected graph that is regular of degree 2.
2. The path graph on N vertices is a graph obtained

from the cycle graph by removing an edge.
3. The graph obtained from the cycle graph on N − 1

vertices by connecting each vertex to a new “hub”
vertex is the wheel on N vertices.

4. The star graph of order N is a tree on N nodes with
one node (the central vertex or “hub”) having ver-
tex degree N − 1 and the other N − 1 having vertex
degree 1.

Let us show next how the graphs and the corresponding
Laplacian matrices look like.

Path graph, N ≥ 2
The path graph on four vertices is shown in Fig. 1a.

The general Laplacian matrix is a tridiagonal matrix of
the form

Lpath
N =


1 −1 0 · · · 0

−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
. . . . . .

...
0 · · · 0 −1 1

 .

The Laplacian spectrum of the path graph is of the
form [Bullo, 2022]

λpath
k = 2− 2 cos

π(k − 1)

N
, k ∈ {1, . . . , N}.

It follows from the properties of the cosine function that
λpath +
min = 2− 2 cos π

N , λpath
max = 2− 2 cos π(N−1)

N .

Evidently, λpath +
min → 0 and λpath

max → 4, as N → ∞.

Cycle graph, N ≥ 3
The cycle graph on four vertices is shown in Fig. 1b.

Its Laplacian matrix is a circulant matrix given below:

Lcycle
N =circ(2,−1, 0, . . . , 0,−1)=


2 −1 0 · · · −1

−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
. . . . . .

...
−1 · · · 0 −1 2

.

The Laplacian spectrum of the cycle graph is given by
[Bullo, 2022]

λcycle
k = 2− 2 cos

2π(k − 1)

N
, k ∈ {1, . . . , N}.

It follows from the properties of the cosine function
that λcycle +

min = 2 − 2 cos 2π
N , λcycle

max = 4 (N is even),
or λcycle

max = 2 − 2 cos π(N−1)
N (N is odd). Evidently,

λcycle +
min → 0 and λcycle

max is equal or tends to 4, as
N → ∞.
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Figure 1. Basic graphs on four (a), (b) and five (c), (d) vertices.

Star graph, N ≥ 4
The star graph on five nodes is shown in Fig. 1c. The

Laplacian matrix has the following form

Lstar
N =

[
N − 1 −1⊤

N−1

−1N−1 IN−1

]
, (5)

where 1N−1 = [1, 1, . . . , 1]⊤ ∈ RN−1 and IN−1 ∈
R(N−1)×(N−1) is the identity matrix. The eigenvalues
of this matrix are [Bullo, 2022]

λstar
1 = 0, λstar

k = 1, k ∈ {2, . . . , N − 1}, λstar
N = N.

Thus, the Laplacian matrix of the star graph has
algebraic connectivity always constant and equal to
unity λstar +

min = 1, and the largest eigenvalue λstar
max = N .

Wheel graph, N ≥ 4
The wheel graph on five nodes is shown in Fig. 1d. The

Laplacian matrix of the wheel is of the form [Ipsen and
Mallik, 2023]

Lwheel
N =

[
N − 1 −1⊤

N−1

−1N−1 BN−1

]
, (6)

where 1N−1 = [1, 1, . . . , 1]⊤ ∈ RN−1 and BN−1 =
circ(3,−1, 0, . . . , 0,−1) ∈ R(N−1)×(N−1) is the cir-
culant matrix. The eigenvalues of the Laplacian ma-
trix are [Alotaibi et al., 2023] λwheel

1 = 0, λwheel
k =

3− 2 cos π(k−1)
N−1 , k ∈ {2, . . . , N − 1}, λwheel

N = N.

Here, λwheel +
min = 3 − 2 cos π

N−1 → 1, as N → ∞.
The largest eigenvalue is λwheel

max = N .

4 Hierarchical Topologies
Hierarchies are often found in control problems of

large-scale network dynamical systems with multi-layer
structure, e.g., see [Williams et al., 2004], [Smith et al.,
2005], [Hara et al., 2009], [Mukherjee and Ghose, 2016].
The two-layer hierarchical graphs considered below are
obtained using the Cartesian product of certain basic
graphs.

It is known that for two graphs Gn and Gm with the cor-
responding Laplacian matrices Ln and Lm, the Carte-
sian product has the following property: the Laplacian
matrix of the Cartesian product of both graphs is given
by the Kronecker sum

Ln ⊕ Lm = Ln ⊗ Im + In ⊗ Lm.

Let us first formulate the following lemma necessary to
analyze the spectra of Laplacian matrices of the obtained
hierarchical graphs.

Lemma 1. Let Ln ∈ Rn×n, Lm ∈ Rm×m be two
Laplacian matrices of connected undirected graphs, and
λi, i ∈ {1, . . . , n}, µj , j ∈ {1, . . . ,m}, be their eigen-
values, respectively. Then the minimum positive λKS +

min

and maximum λKS
max eigenvalues of the Kronecker sum

Ln ⊕ Lm satisfy

λKS +
min = min{λ+

min, µ
+
min}, λ

KS
max = λmax + µmax.

Proof. The idea of the proof is based on the properties
of the spectrum of the Kronecker sum of matrices [Laub,
2004] and the positive semidefiniteness of Laplacian ma-
trices. First, by Kronecker sum properties, the eigenval-
ues of the resulting matrix will be pairwise sums λi+µj ,
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}. It follows that the
largest eigenvalue of the new matrix will be the sum of
the maximum eigenvalues of the matrices Ln and Lm.
Second, since the spectrum of any Laplacian matrix of a
connected graph contains a simple zero eigenvalue, the
smallest positive eigenvalue of their Kronecker sum is
λKS +
min = min{λ+

min, µ
+
min}. This concludes the proof.

Next, we consider several hierarchical graphs on N =
m ·n nodes obtained as Cartesian products of some basic
graphs. For each of these graphs, we present its graphical
illustration and the form of corresponding Laplacian ma-
trix, see Fig. 2 (inter-layer edges are in black, intra-layer
edges are given in red). Then we formulate a theorem on
the eigenvalues of the matrices.

First, let us consider the graph obtained as the Carte-
sian product of two path graphs.
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Figure 2. Hierarchical topologies.

Hierarchy #1: Rectangular grid, 2 ≤ n ≤ m
The rectangular lattice graph on six vertices is shown

in Fig. 2a.The corresponding Laplacian matrix in the
general form is given as the Kronecker sum of two
Laplacian matrices:

Lrg
N = Lpath

n ⊕ Lpath
m .

Next, several hierarchies obtained as Cartesian multi-
plication by path graph and cycle graph are presented;
they can be visualized as cylindrical and toroidal in
shape.

Hierarchy #2: Cartesian product of a cycle graph and
a path graph, m ≥ 2, n ≥ 3

The graph is shown in Fig. 2b, n = 4,m = 3, the
Laplacian matrix is as follows:

Lcp
N = Lcycle

n ⊕ Lpath
m .

Hierarchy #3: Cartesian product of a star graph and a
path graph, m ≥ 2, n ≥ 4

The graph is presented in Fig. 2c, n = 4,m = 3, the
matrix Lsp

N is given by

Lsp
N = Lstar

n ⊕ Lpath
m .

Hierarchy #4: Cartesian product of wheel and path
graphs, m ≥ 2, n ≥ 4

Such a graph has already been considered in the lit-
erature, but from a different perspective [Joseph and
Kureethara, 2023].

The resulting graph is shown in Fig. 2d, n = 4,m = 3.
Its Laplacian matrix is as follows:

Lwp
N = Lwheel

n ⊕ Lpath
m .

Hierarchy #5: Cartesian product of two cycle graphs,
m ≥ 3, n ≥ 3

The graph is depicted in Fig. 2e, n = 4,m = 3, the
Laplacian matrix of this graph is as follows:

Lcp
N = Lcycle

n ⊕ Lcycle
m .

Hierarchy #6: Cartesian product of a star graph and a
cycle graph, m ≥ 3, n ≥ 4

The corresponding graph is shown in Fig. 2f, n =
5,m = 3, its Laplacian matrix Lsc

N is of the form

Lsc
N = Lstar

n ⊕ Lcycle
m .

Hierarchy #7: Cartesian product of wheel and cycle
graphs, m ≥ 3, n ≥ 4
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The corresponding graph is shown in Fig. 2g, n =
5,m = 3, the Laplacian matrix is as follows:

Lwc
N = Lwheel

n ⊕ Lcycle
m .

From the obtained expressions for the spectra of the
basic graphs and applying Lemma 1 we can formulate
the following theorem.

Theorem 2. For the hierarchies listed above, the values
of the smallest positive and largest eigenvalues are of the
form:

1. λrg +
min = 2−2 cos π

m , λrg
max = 4−2 cos π(m−1)

m −
2 cos π(n−1)

n , 2 ≤ n ≤ m;
2. λcp +

min = 2 − 2 cos π
m (for n ≤ 2m), λcp +

min =
2 − 2 cos 2π

n (for n ≥ 2m), λcp
max = 6 −

2 cos π(m−1)
m (n is even), or λcp

max = 4 −
2 cos π(m−1)

m − 2 cos π(n−1)
n (n is odd);

3. λsp +
min = 1, 2 ≤ m ≤ 3, λsp +

min = 2 − 2 cos π
m ,

m ≥ 3, λsp
max = n+ 2− 2 cos π(m−1)

m ;
4. λwp +

min = 2 − 2 cos π
m , λwp

max = n + 2 −
2 cos π(m−1)

m ;
5. λcc +

min = 2 − 2 cos 2π
m , (m ≥ n), λcc +

min = 2 −
2 cos 2π

n , (m ≤ n), λcp
max = 8 (n,m are even),

λcp
max = 6 − 2 cos π(m−1)

m (n is even, m is odd), or
λcp
max = 6 − 2 cos π(n−1)

n (n is odd, m is even), or
λcp
max = 4− 2 cos π(m−1)

m − 2 cos π(n−1)
n (n,m are

odd);
6. λsc +

min = 1, 3 ≤ m ≤ 6, λsc +
min = 2 − 2 cos 2π

m ,
m ≥ 6 λsc

max = n + 4 (m is even), λsc
max = n +

2− 2 cos π(m−1)
m (m is odd);

7. λwc +
min = 2− 2 cos 2π

m , λwc
max = n+4 (m is even),

or λwc
max = n+ 2− 2 cos π(m−1)

m (m is odd).

Proof. The proof follows from 1) Lemma 1, where the
Laplacian matrices are the matrices of the basic graphs,
and the smallest non-zero and largest eigenvalues are
summarized in Table 1, as well as from the 2) property
of the cosine function.

5 Discussion
In this section, we discuss the spectral properties of the

Laplacian matrices of the basic and hierarchical graphs.
Basic graphs. The results of the analysis of Laplacian

spectra of each of the basic graphs are summarized in Ta-
ble 1. From the expressions presented in there, as well as
from Fig. 3, one can conclude that λ+

min and λmax of cer-
tain basic graphs have similar asymptotics. Thus, it can
be observed that for large values of N , there is not much
difference between χstar, ∆star and χwheel, ∆wheel, re-
spectively, since λstar

max = λwheel
max = N and λ+

min equals to
or tends to 1. Thus, χstar, χwheel ∼ N . In the context of
multi-agent systems, such interaction graphs mean that
consensus will be reached for any value of N only for
particular high-order agent models. In the context of

multi-agent systems, such interaction graphs mean that
consensus will be reached for any value of N only for
particular high-order agent models. For example, if the
agent dynamics has transfer function as in Eq. (10), see
Example 2 in [Hara et al., 2014], then its correspond-
ing consensus region includes only part of the real axis.
Therefore, as N increases, it is necessary to change the
agent parameters and/or the weights/type of the commu-
nication graph.

The properties of the path graph and the cycle graph
are different from those of the star and wheel graphs:
Both graphs have no central node (1), the condition num-
ber of the Laplacian matrix increases with the dimension
as χ ∼ N2 while ∆ ≈ 4 for large N (2).

However, if we talk about first-order consensus dy-
namics in continuous time (4), then for N > 4, the con-
vergence rate for the star and wheel graphs will be higher
than for the path and cycle graphs.

2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 3. Behavior of λ+
min and λmax depending on the number of

nodes N . The asterisks indicate the initial number of nodes.

Hierarchical graphs. For the case of a square
grid m = n, one may notice that λ+

min = 2 −
2 cos π

n , λmax = 4− 4 cos π(n−1)
n . Evidently, λ+

min →
0 and λmax → 8, as n → ∞.

In the general case, for each of the obtained graphs
the eigenvalues λ+

min, λmax of their Laplacian matrices
are functions of two variables m, n, and therefore their
analysis is less illustrative.

6 Conclusion
Obtaining closed-form expressions for the eigenvalues

of Laplacian matrices of special graphs helps to analyze
decentralized dynamical networks for stability and con-
vergence rate. In this study, we have obtained closed-
form expressions for the smallest non-zero and largest
eigenvalues of the Laplacian matrices of basic graphs as
well as hierarchical graphs derived from basic graphs.
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Graph Laplacian spectrum, λk λ+
min λmax

Path graph 2− 2 cosπ(k − 1)/N, k ∈ {1, . . . , N} 2− 2 cosπ/N 2− 2 cosπ(N − 1)/N

Cycle graph 2− 2 cos 2π(k − 1)/N, k ∈ {1, . . . , N} 2−2 cos 2π/N a) 4, (N is even), or b) 2 −
2 cosπ(N−1)/N , (N is odd)

Star graph λ1=0, λk=1, k∈{2, . . . , N−1}, λN = N 1 N

Wheel graph λ1 = 0, λk = 3 − 2 cos π(k−1)
N−1 , k ∈

{2, . . . , N − 1}, λN = N
3− 2 cos π

N−1 N

Table 1. Laplacian spectra of the basic graphs.

Namely, for the basic graphs, the spectra have been an-
alyzed in terms of the localization of the segment con-
taining the Laplacian eigenvalues, and also in terms of
the condition number, which is important for first and
higher order consensus and decentralized optimization
problems. For the proposed hierarchical graphs con-
structed as the Cartesian product of certain basic graphs,
the corresponding theorem on the spectra has been for-
mulated and the corresponding formulas have been de-
rived.
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