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Abstract 
A computationally efficient methodology is 

presented for capturing periodic steady state response 
of a periodically excited city bus model. First, the 
equations of motion for each of the components of the 
bus are set up by applying the finite element method. 
As a consequence of the geometric complexity, the 
number of the resulting equations is quite high. In 
addition, the composite model possesses strongly 
nonlinear characteristics. Therefore, a suitable method 
is applied originally in order to reduce the dimension 
of the system. This then allows the application of 
appropriate numerical methodologies for predicting 
steady state response of the nonlinear models 
examined to periodic road excitation. As a result, 
selected response quantities are evaluated and 
presented for characteristic combinations of the bus 
suspension stiffness and damping parameters. 
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1 Introduction 
Urban buses are widely used vehicles to transfer 

passengers throughout the world. It is therefore 
important to develop and study mechanical models 
leading to an accurate and fast determination of their 
dynamic response. In addition, the ability to do this 
provides the basis for performing many other direct or 
indirect analyses. Accurate and fast determination of 
the dynamics of large scale mechanical models has 
become more tractable and feasible, especially in the 
last three decades (e.g., [Fey, 1996; Chen, 1998; 
Papalukopoulos, 2007]). However, there is still plenty 
of room for improvements when complex mechanical 
systems are examined. This is especially true for 
urban buses, where the previous research studies are 
either limited to simplified models or study specific 

aspects of the bus ride and handling response only 
[Rakheja, 2001; Yu, 2002; Cunha, 2001]. 
The main objective of the present work is to develop 

a systematic methodology leading to a direct 
determination of steady state response of periodically 
excited complex mechanical models of a city bus. 
Here, the term complex refers to both the large 
number of degrees of freedom and the nonlinearities 
of the system. The basic idea is to first reduce the 
dimension of the system examined by applying an 
appropriate coordinate transformation, based on an 
automatic multi-level substructuring of its 
components [Papalukopoulos, 2007; Bennighof, 
2000]. This methodology is coupled with an 
appropriate numerical procedure leading to a direct 
determination of periodic steady state motions of the 
bus model chosen, resulting in response to periodic 
road excitation [Doedel, 1986]. 
The organization of this paper is as follows. First, the 

mechanical model examined is briefly presented in 
the following section. Then, the basic steps of the 
methodology employed, including both the coordinate 
reduction and the steady state determination parts, are 
summarised in the third and fourth section, 
respectively. Next, the dynamic response of the bus 
models subjected to specified periodic road excitation 
is investigated. Emphasis is placed on capturing 
periodic steady state motions for bus velocities, which 
are appropriate for ride studies of the vehicle models 
examined. The work is completed by summarizing the 
highlights in the last section. 
 

2 Mechanical Model of the Bus 
The complete mechanical model of the vehicle 

examined is shown in Fig. 1. This vehicle is a low 
floor urban bus with two axles, designed primarily for 
inner city operation. Besides the detailed modeling of 
the bus upper body structure (or superstructure) and 
chassis frame, it was considered as equally important 
to model in as good a manner as possible several 



important subsystems, like the front and rear axle, 
including the steering system and the tires, the 
transmission system, the differential, the power unit 
and the brakes.  
Among the vehicle components, the chassis frame 

and the body superstructure play a dominant role in its 
overall performance. The main parts of the chassis 
frame were geometrically discretized by a relatively 
large number of shell finite elements, leading to a 
model with 337,260 degrees of freedom. On the other 
hand, the finite element discretization of the vehicle 
superstructure led to a model possessing 955,866 
degrees of freedom. In addition to the structural parts, 
special added mass elements were also employed in 
modeling systems like the air-condition unit, the fuel 
tanks, the bus floor including the passenger seats and 
the baggage store compartment. 

 
Figure 1.   Complete bus model. 

 

The flexible parts of the rear suspension were 
modeled with shell finite elements. However, some 
parts of the front suspension were modeled with solid 
finite elements. In addition, rigid body elements were 
employed for modeling the action of the 
interconnections and supports in both the front and 
the rear suspension subsystems. Likewise, the seat-
passenger subsystems as well as the wheel subsystems 
were represented by appropriate sets of discrete mass, 
stiffness and damping elements. Finally, the stiffness 
and damping properties of the suspension units were 
modeled according to the graphs included in Fig. 2. In 
the former case, the nonlinearity is caused by the 
presence of suspension bump stops and rebound 
stops. In the latter case, the rebound (extension) 
equivalent damping coefficients are much higher than 
the corresponding jounce (compression) damping 
coefficients, in accordance to common practice 
[Gillespie, 1992]. Moreover, the equivalent damping 
coefficients are lower at higher velocities. 
An attractive feature of the system examined is that 

its nonlinearities appear mainly at connections of the 
suspensions with the wheels and the body. This makes 
possible the application of special techniques, which 
reduce significantly the number of degrees of freedom 
by removing the dynamics from some of the high 
frequency modes [Fey, 1996; Chen, 1998; 
Papalukopoulos, 2007]. This facilitates the subsequent 

application of a numerical methodology leading to a 
direct determination of periodic steady state response. 
More details on the methodology developed are 
presented in the following two sections. 

 

 
 

 
 

Figure 2.   (a) Force-displacement characteristics of 
the suspension springs. (b) Force-velocity properties 

of the suspension dampers. 
 

3 Substructuring Method 
The equations of motion of the class of dynamical 

systems examined in the present study can be cast in 
the form of a system of nonlinear ordinary differential 
equations, as follows 

)(),( tfxxhxKxCxM −+++ &&&& . (1) 

All the unknowns are included in the vector 

( )Tnxxxtx K21)( = , 

while M , C  and K  are the mass, damping and 
stiffness matrix of the system, respectively. Moreover, 

the elements of the vector ),( xxh &  include the 

nonlinear terms arising from the action of the coupled 

dynamical system, while the vector )(tf  represents 

the terms arising from the external forcing. 
A complex mechanical system includes contributions 

from several subsystems. For instance, consider a 



system composed of two components. If both of these 
components possess linear characteristics and the 
damping effects are negligible, the equations of motion 
for component 1 alone are first derived in the following 
form 

)(
11111 tfxKxM =+&& . (2) 

Then, through a coordinate transformation of the form 

)()(
111 tqTtx = , (3) 

the original set of equations is replaced by a 
considerably smaller set, expressed in terms of the 
generalized coordinates 

1
q . More specifically, 

application of the Ritz transformation (3) into the set of 
equations (2) yields the smaller dimension set 

)(ˆˆˆ
11111 tfqKqM =+&& , (4) 

where 

1111
ˆ TMTM T= ,  1111

ˆ TKTK T= , 
111

ˆ fTf T= . 
The most intensive numerical computations 
encountered in setting up equation (4) are those 
associated with the evaluation of the columns of the 

transformation matrix 1T . For example, in the classical 

Craig-Bampton method, this matrix includes a number 
of fixed interface normal modes, complemented by 
constraint modes [Nayfeh, 1995]. 

Repeating the same process for component 2 leads to 
another reduced set of equations similar to (4). Then, 
combining these equations leads eventually to the 
equations of motion of the composite system in the 
standard form 

)(tfqKqM =+&& . 

The stiffness and mass matrices of the composite 
system are finally derived in the form 
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respectively, where the submatrices iΛ  and iI  are 

diagonal. Also, the mass matrix includes nonzero 
elements only at places where there is coupling 
between the involved degrees of freedom. Finally, 
when damping effects are present, the transformed 
damping matrix has a form similar to the transformed 
mass matrix. 

The contribution of more components is treated in a 
similar manner. However, when the dimension of the 
system components is relatively large, the 
computations associated with the numerical evaluation 
of the transformations required in each step become 
excessive. For this reason, a new class of methods has 
been developed recently, which overcomes these 

difficulties in an efficient manner. These methods have 
their origin in a method called automated multi-level 
substructuring [Bennighof, 2000], which is performed 
within each structural component in an automatic way. 
Since the individual transformations are performed on 
many small dimensional systems instead of one larger 
dimensional system, a drastic reduction in the 
computation time is achieved. Besides, this approach 
leads to other important numerical benefits, since it is 
associated with a much smaller volume of data transfer 
and causes a tremendous reduction in the computer 
memory required for the execution of the overall 
computations [Papalukopoulos, 2007, Bennighof, 
2000]. As a consequence of the applied 
transformations, the order of the final set of the 
equations of motion is reduced substantially, while 
maintaining their accuracy up to a suitably selected 
forcing frequency level. 

 

4 Periodic Steady State Motions  
In developing a methodology, leading to direct 
determination of periodic steady state response of the 
dynamical systems examined, the equations of motion 
(1) are first rewritten as 

)(),(),,,( tfxxhxKxCxMtxxxg −+++≡ &&&&&&& 0=  

When the forcing is periodic, that is 

)()( tfTtf E =+ , 

the long term response of the system may also reach a 
periodic steady state, with 

)()( txTtx =+ . 

The period T  of the response is in general a 

commensurate multiple of the forcing period ET , with 

the most common case being EmTT = , corresponding 

to harmonic ( 1=m ) or subharmonic ( ,...3,2=m ) 
response. Then 

),,,(),,,( txxxgTtxxxg &&&&&& =+ , 

with 

)0()( xTx =  and  )0()( xTx && = . 

In the present study, a shooting method is selected for 
the temporal discretization of the last set of equations 
[Nayfeh, 1995]. This leads eventually to a system of 
algebraic equations having the form 

0)( =yg , (5) 

with unknowns included in the vector y . In general, 

this system is nonlinear and an appropriate Newton-
Raphson type methodology is applied for its numerical 
solution. This subsequently leads to a direct location of 
periodic motions of the original equations of motion 
(1). 
 

5 Numerical Results  
In a typical situation, periodic steady state motions of a 
dynamical system with nonlinear characteristics 



subjected to periodic forcing may be captured by 
performing direct integration of the equations of 
motion. However, this is a time consuming process 
with an unpredictable outcome [Nayfeh, 1995]. The 
main contribution of the present study is the 
development of a systematic method leading to direct 
determination of such motions. In the remainder of this 
section, some typical numerical results are presented 
along this direction. 

One of the objectives was to explore the effect of 
some important technical parameters on the vehicle 
ride dynamics. To achieve this, the following sequence 
of figures shows results corresponding to periodic 
steady state motions developed due to base excitation 
caused by passage of the bus over a typical road. In 
fact, the road profile was chosen to be relatively rough, 
in order to excite the structural nonlinearities. 
Moreover, the road profile was assumed to be repeated, 
with a wavelength of 100 m, while the bus runs with a 
constant horizontal velocity 0v = 50 km/h. 

First, Fig. 3 depicts the history of the vertical 
displacement of the driver and a selected passenger, 
over a response period. The continuous curves 
represent results obtained by considering the fully 
nonlinear model, while the broken lines were 
determined for the linearized model arising around the 
corresponding static equilibrium position of the bus. As 
expected, there are significant deviations between the 
predictions of the two models. This illustrates the need 
to include the nonlinear terms in the equations of 
motion. In addition, it is obvious that the maximum 
value of a response quantity is in general different than 
its minimum value. This is expected to occur, due to 
the asymmetries in both the connection elements and 
the mechanical elements of the suspension shock 
absorber and spring units. 
 

 
 

 
 

Figure 3.   Periodic steady state vertical displacement 
of: (a) the driver and (b) a selected passenger. 

 

In the second example, the stiffness coefficients of 
the main springs in all the suspension units were 
reduced to half of their default values. The results 
presented in Fig. 4 refer to the same quantities 
presented in the diagrams of the previous figure. 
Obviously, direct comparison  demonstrates a drastic 
change in the system response. Such changes in the 
response are useful to record and investigate in order to 
perform damage detection studies for the bus 
suspension parameters in a systematic way. 

 
 

 
 

 
 

Figure 4.   Periodic vertical displacement history of: 
(a) the driver and (b) a selected passenger. 



Finally, similar changes in the response were detected 
by changing other, non-structural parameters. For 
instance, in Fig. 5 are presented and compared similar 
results, obtained by reducing the horizontal velocity of 
the bus to 20 km/h. More specifically, the results 
obtained for the lower velocity are represented by the 
broken curves. Again, significant changes appear in the 
periodic motions detected, which are mainly due to the 
differences induced in the frequency content of the 
loading. 

In closing, it is noted that it is required frequently to 
locate complete branches of periodic motions of a 
mechanical system, as an important parameter of the 
system is varied. For instance, in periodic excitation of 
dynamical systems, a typical such parameter is the 
fundamental forcing frequency. In such cases, a proper 
continuation technique is applied in order to locate 
complete branches of response spectra, which provide 
useful information on the effect of the parameters on 
the response [Nayfeh, 1995]. Such results are presented 
in Fig. 6. 
 

 
 

 
 

Figure 5.   Periodic vertical displacement history of: 
(a) the driver and (b) a selected passenger. 

 
In particular, Fig. 6 displays frequency-response 

diagrams obtained at two specific points of the bus 
considered. The first refers to the point of the bus frame 
where the driver seat is mounted, while the second is a 

selected point at the bus roof. More specifically, the 
bus was excited by a vertical harmonic forcing applied 
at the front left wheel of the bus. The root mean square 
value of the acceleration history is presented within the 
forcing frequency interval 0-30 Hz, which is typical for 
ride studies referring to ground vehicles [Gillespie, 
1992]. 

As usual, the information of Fig. 6 is useful in 
assessing the forcing frequency ranges where the 
response quantity examined exhibits high level 
vibrations. For comparison purposes, the broken curves 
represent similar results, obtained by running the model 
resulted by linearizing the equations of motion around 
the static equilibrium position of the bus. The 
deviations observed between the predictions of the 
nonlinear and the linearized model are amplified as the 
forcing amplitude is increased. 

 

 
 

Figure 6.   Frequency-response diagrams: (a) at the 
driver seat position and (b) at a selected point of the 

bus roof. 
 

6 Synopsis  
A systematic methodology was applied for 

determining steady state ride response of a periodically 
excited large order bus model in a computationally 
efficient way. The model examined belongs to a class 
of systems resulting from a quite detailed finite element 
discretization and possessing elements with strongly 
nonlinear properties. The basic idea was to first apply a 
substructuring method, so that the reduced model is 
sufficiently accurate up to a prespecified level of 
forcing frequencies. The analysis was then completed 
by a method leading to a direct determination of steady 
state response to periodic excitation. The validity of the 
methodology was illustrated by presenting numerical 



results obtained under periodic road excitation. 
Namely, response histories of quantities related to 
vehicle ride performance were constructed for steady 
state motions resulting from selected periodic road 
excitation. Among other things, some emphasis was put 
in noting deviations arising between predictions of 
nonlinear and corresponding linearized models. 
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