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Abstract aspects of the bus ride and handling response only

A computationally efficient methodology is [Rakheja, 2001; Yu, 2002; Cunha, 2001].
presented for capturing periodic steady state iespo  The main objective of the present work is to depelo
of a periodically excited city bus model. Firsteth a systematic methodology leading to a direct
equations of motion for each of the componenthieft determination of steady state response of peritigica
bus are set up by applying the finite element meitho excited complex mechanical models of a city bus.
As a consequence of the geometric complexity, theHere, the term complex refers to both the large
number of the resulting equations is quite high. In number of degrees of freedom and the nonlinearities
addition, the composite model possesses stronglyof the system. The basic idea is to first reduce th
nonlinear characteristics. Therefore, a suitabléhotk dimension of the system examined by applying an
is applied originally in order to reduce the dimens appropriate coordinate transformation, based on an
of the system. This then allows the application of automatic — multi-level  substructuring of its
appropriate numerical methodologies for predicting components [Papalukopoulos, 2007; Bennighof,
steady state response of the nonlinear models2000]. This methodology is coupled with an
examined to periodic road excitation. As a result, appropriate numerical procedure leading to a direct
selected response quantities are evaluated andletermination of periodic steady state motionshef t
presented for characteristic combinations of the bu bus model chosen, resulting in response to periodic
suspension stiffness and damping parameters. road excitation [Doedel, 1986].

The organization of this paper is as follows. Fitisé

mechanical model examined is briefly presented in

Key words the following section. Then, the basic steps of the
Periodic steady state, Nonlinear dynamic systems,methodology employed, including both the coordinate
Finite element modeling, Vehicle dynamics. reduction and the steady state determination pems,

summarised in the third and fourth section,
) respectively. Next, the dynamic response of the bus
1 Introduction models subjected to specified periodic road exoitat
Urban buses are widely used vehicles_ to transferis jnvestigated. Emphasis is placed on capturing
passengers throughout the world. It is therefore periodic steady state motions for bus velocitielsictv
important to develop and study mechanical models gre appropriate for ride studies of the vehicle eted

leading to an accurate and fast determination @f th  examined. The work is completed by summarizing the
dynamic response. In addition, the ability to dsth  pjghilights in the last section.

provides the basis for performing many other dimct

indirect analyses. Accurate and fast determinatibn

the dynamics of large scale mechanical models has2 Mechanical Model of the Bus

become more tractable and feasible, especiallpen t The complete mechanical model of the vehicle
last three decades (e.g., [Fey, 1996; Chen, 1998examined is shown in Fig. 1. This vehicle is a low
Papalukopoulos, 2007]). However, there is stilhpfe  floor urban bus with two axles, designed primafdy

of room for improvements when complex mechanical inner city operation. Besides the detailed modetihg
systems are examined. This is especially true forthe bus upper body structure (or superstructure) an
urban buses, where the previous research studées archassis frame, it was considered as equally impbrta
either limited to simplified models or study spéxif to model in as good a manner as possible several



important subsystems, like the front and rear axle, application of a numerical methodology leading to a
including the steering system and the tires, the direct determination of periodic steady state raspo
transmission system, the differential, the poweit un More details on the methodology developed are

and the brakes. presented in the following two sections.
Among the vehicle components, the chassis frame

and the body superstructure play a dominant roiesin 50000

overall performance. The main parts of the chassis @

frame were geometrically discretized by a relativel

large number of shell finite elements, leading to a
model with 337,260 degrees of freedom. On the other
hand, the finite element discretization of the eéhi
superstructure led to a model possessing 955,866 -
degrees of freedom. In addition to the structueaty -
special added mass elements were also employed in
modeling systems like the air-condition unit, thelf

tanks, the bus floor including the passenger smads

the baggage store compartment.
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Figure 1. Complete bus model.
The flexible parts of the rear suspension were
modeled with shell finite elements. However, some 1500
parts of the front suspension were modeled witfdsol -1000 0 1000
finite elements. In addition, rigid body elementsres [mm/s]

employed for modeling the action of the Figure 2. (a) Force-displacement characteristics
interconnections and supports in both the front and the suspension springs. (b) Force-velocity propsrti
the rear suspension subsystems. Likewise, the seat- of the suspension dampers.

passenger subsystems as well as the wheel subsystem

were represented by appropriate sets of discress,ma

stiffness and damping elements. Finally, the sy 3 Substructuring Method

and damping properties of the suspension units were The equations of motion of the class of dynamical
modeled according to the graphs included in Fign2.  Systems examined in the present study can berast i
the former case, the nonlinearity is caused by thethe form of a system of nonlinear ordinary diffetiah
presence of suspension bump stops and reboundduations, as follows

stops. In the latter case, the rebound (extension) M X+Cx+ Kx+h(x,x)- f(t). (1)
equivalent damping coefficients are much highentha —
the corresponding jounce (compression) damping
coefficients, in accordance to common practice X(t) = (X1 X, o0 X, )T,
[Gillespie, 1992]. Moreover, the equivalent damping
coefficients are lower at higher velocities.

An attractive feature of the system examined i$ tha
its nonlinearities appear mainly at connectionshef the elements of the vectol(X,X) include the
suspensions with the wheels and the body. This snake nonlinear terms arising from the action of the dedp
possible the application of special techniques,ctvhi
reduce significantly the number of degrees of fozad
by removing the dynamics from some of the high the terms arising from the external forcing.

frequency modes [Fey, 1996; Chen, 1998; A complex mechanical system includes contributions
Papalukopoulos, 2007]. This facilitates the subeatju  from several subsystems. For instance, consider a

All the unknowns are included in the vector

while M, C and K are the mass, damping and
stiffness matrix of the system, respectively. Maexo

dynamical system, while the vectoj ) represents



system composed of two components. If both of thesdifficulties in an efficient manner. These methddse
components possess linear characteristics and thieeir origin in a method called automated multidev
damping effects are negligible, the equations ofieno  substructuring [Bennighof, 2000], which is perfordne
for component 1 alone are first derived in thedaing  within each structural component in an automatiy.wa
form Since the individual transformations are perfornoad
Y _ many small dimensional systems instead of one farge
MiX; + KX _il(t)' (2) dimensional system, a drastic reduction in the
Then, through a coordinate transformation of thenfo  computation time is achieved. Besides, this apgroac
_ leads to other important numerical benefits, siihds
X() =T, gl(t) ' 3) associated with a much smaller volume of data fesins
the original set of equations is replaced by aand causes a tremendous reduction in the computer
considerably smaller set, expressed in terms of thmemory required for the execution of the overall
generalized coordinatesq,. More specifically, ~computations [Papalukopoulos, 2007, ~Bennighof,
~ 2000]. As a consequence of the applied
transformations, the order of the final set of the
- R - equations of motion is reduced substantially, while
M,§ +Kyq =f (1), 4) maintaining their accuracy up to a suitably seldcte
-1 -1 -1 forcing frequency level.

application of the Ritz transformation (3) into thet of
equations (2) yields the smaller dimension set

where
My=TI M Ty, K =T/KT,, f. =T f . .
1771771, ™M=l Ml 7 2y 4 Periodic Steady State Motions
The most intensive numerical computationsin developing a methodology, leading to direct
encountered in setting up equation (4) are thosdetermination of periodic steady state responsthef
associated with the evaluation of the columns @f thdynamical systems examined, the equations of motion

. T, . . (1) are first rewritten as

transformation matrix!1 . For example, in the classical XX t) = M %+ Cxt K h(x. 3 f(t 0
Craig-Bampton method, this matrix includes a numberg(l(’l(’l(’ ) =MX+Cx+Kx+h(xX) - f(t) =0
of fixed interface normal modes, complemented bywhen the forcing is periodic, that is
constraint modes [Nayfeh, 1995]. f T )= f

Repeating the same process for component 2 leads to _(t +Te) = _(t) :
another reduced set of equations similar to (4eriTh the long term response of the system may also raach
combining these equations leads eventually to theperiodic steady state, with
equations of motion of the composite system in the _
standard form X(t+T)=x().

MG+Kag=f(t). The period T of the response is in general a
The stiffness and mass matrices of the composit€oMmmensurate multiple of the forcing peridg , with
system are finally derived in the form the most common case beidg= MTg , corresponding
Aq 0 0 to harmonic (M=1) or subharmonic = 23,...)
K= A, O response. Then
sym K3 Q(X!X’l(!t'i_-r):g(x’x’l(!t)!
and with
(11 0 g X(T) = x(0) and X(T) = x(0).
M = I, ,[,23 In the present study, a shooting method is selefcted
M’ ' the temporal discretization of the last set of ¢igua
| Sym 3 [Nayfeh, 1995]. This leads eventually to a systeim o

. : algebraic equations having the form
respectively, where the submatricés and Ii are g IC equations having

diagonal. Also, the mass matrix includes nonzero g(y) =0, (5)

elements only at places where there is coupling . : .

between the involved degrees of freedom. Finall ?\”th unknowns included in the vectdy. In general,

when damping effects are present, the transformedis system is nonlinear and an appropriate Newton-

damping matrix has a form similar to the transfodme Raphson type methodology is applied for its nunagric

mass matrix. solution. This subsequently leads to a direct iocabf
The contribution of more components is treated in @eriodic motions of the original equations of matio

similar manner. However, when the dimension of thdl).

system components is relatively large, the

computations associated with the numerical evalnati

of the transformations required in each step becomg Numerical Results _
excessive. For this reason, a new class of methags " @ typical situation, periodic steady state musiof a

been developed recently, which overcomes thesdynamical system with nonlinear characteristics



subjected to periodic forcing may be captured by 100
performing direct integration of the equations of
motion. However, this is a time consuming process
with an unpredictable outcome [Nayfeh, 1995]. The
main contribution of the present study is the
development of a systematic method leading to tirec
determination of such motions. In the remaindethaf T
section, some typical numerical results are present g °
along this direction.

One of the objectives was to explore the effect of
some important technical parameters on the vehicle -50
ride dynamics. To achieve this, the following setpee
of figures shows results corresponding to periodic

50

steady state motions developed due to base erditati -100 .

caused by passage of the bus over a typical raad. | 0 1 2
fact, the road profile was chosen to be relativelygh, [sec]

in order to excite the structural nonlinearities. Figure 3. Periodic steady state verticaptiisemen
Moreover, the road profile was assumed to be repgeat of: (a) the driver and (b) a selected passenger.

with a wavelength of 100 m, while the bus runs vaith In the second example, the stiffness coefficierits o

constant horizontal velocity, = 50 km/h. the main springs in all the suspension units were
First, Fig. 3 depicts the history of the verticalreduced to half of their default values. The result
displacement of the driver and a selected passgnggresented in Fig. 4 refer to the same quantities
over a response period. The continuous curvepresented in the diagrams of the previous figure.
represent results obtained by considering the fullObviously, direct comparison demonstrates a drasti
nonlinear model, while the broken lines werechange in the system response. Such changes in the
determined for the linearized model arising arotiel  response are useful to record and investigatedardn
corresponding static equilibrium position of thesbAs  perform damage detection studies for the bus
expected, there are significant deviations betwien suspension parameters in a systematic way.
predictions of the two models. This illustrates teed
to include the nonlinear terms in the equations of 250
motion. In addition, it is obvious that the maximum
value of a response quantity is in general diffetban
its minimum value. This is expected to occur, doe t 150
the asymmetries in both the connection elements anc 100
the mechanical elements of the suspension shock
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Figure 4. Periodic vertical displacement histofy
(a) the driver and (b) a selected passenger.



Finally, similar changes in the response were detiec selected point at the bus roof. More specificathe
by changing other, non-structural parameters. Fobus was excited by a vertical harmonic forcing agupl
instance, in Fig. 5 are presented and comparedasimi at the front left wheel of the bus. The root mequase
results, obtained by reducing the horizontal véjoof  value of the acceleration history is presented iwithe
the bus to 20 km/h. More specifically, the resultsforcing frequency interval 0-30 Hz, which is tygdi¢er
obtained for the lower velocity are representedt®y ride studies referring to ground vehicles [Gillespi
broken curves. Again, significant changes apped#inén 1992].
periodic motions detected, which are mainly dughto As usual, the information of Fig. 6 is useful in
differences induced in the frequency content of theassessing the forcing frequency ranges where the
loading. response quantity examined exhibits high level

In closing, it is noted that it is required freqtlgrto  vibrations. For comparison purposes, the brokemesur

locate complete branches of periodic motions of aepresent similar results, obtained by runningntioelel
mechanical system, as an important parameter of thesulted by linearizing the equations of motionusc

system is varied. For instance, in periodic exidtabf

the static equilibrium position of the bus.

The

dynamical systems, a typical such parameter is thdeviations observed between the predictions of the
fundamental forcing frequency. In such cases, agro nonlinear and the linearized model are amplifiedhas
continuation technique is applied in order to lecat forcing amplitude is increased.

complete branches of response spectra, which provid
useful information on the effect of the parametens
the response [Nayfeh, 1995]. Such results are ptege
in Fig. 6.
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Figure 5. Periodic vertical displacement histofy
(a) the driver and (b) a selected passenger.

In particular, Fig. 6 displays frequency-respons
diagrams obtained at two specific points of the bu
considered. The first refers to the point of the frame
where the driver seat is mounted, while the sedsrzd
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Figure 6. Frequency-response diagrams: (a) at the
driver seat position and (b) at a selected poithef
bus roof.

6 Synopsis

A systematic methodology was applied
determining steady state ride response of a peatdi
excited large order bus model in a computationally
efficient way. The model examined belongs to aslas
of systems resulting from a quite detailed finieneent
discretization and possessing elements with styongl
nonlinear properties. The basic idea was to fippiyaa
substructuring method, so that the reduced model is
sufficiently accurate up to a prespecified level of
rcing frequencies. The analysis was then comglete

for

0
%y a method leading to a direct determination e&gy

state response to periodic excitation. The validftthe
methodology was illustrated by presenting numerical



results obtained under periodic road excitation. of a Three-Axle Intercity Bus.16th European

Namely, response histories of quantities related to ADAMS Users Conference.

vehicle ride performance were constructed for steadDoedel, E. (1986)AUTO: Software for Continuation

state motions resulting from selected periodic road and Bifurcation Problems in Ordinary Differential

excitation. Among other things, some emphasis ws p Equations, California Institute of Technology,

in noting deviations arising between predictions of Pasadena, California.

nonlinear and corresponding linearized models. Fey, R.H.B., Campen, D.H. van and Kraker, A. de
(1996). Long Term Structural Dynamics of
Mechanical Systems with Local Nonlinearities.
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