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Abstract
We study the emergence of synchronization in the net-

work motif of three bistable Duffing oscillators coupled
in all possible configurations. The equation of motion is
derived for every configuration. For each motif, we vary
initial conditions of every oscillator and calculate the bi-
furcation diagram as a function of the coupling strength.
We find transitions of the whole system to a monostable
regime with either a fixed point or a limit cycle depend-
ing on the motif’s configuration, as the coupling strength
is increased. The most complex dynamics is observed
the unidirectional chain, where a transition to quasiperi-
odicity occurs.

Key words
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1 Introduction
Complex networks have been taking a prominent role

in many aspects of modern science and society. It is
widely accepted that large-scale dynamical properties
of a network are governed by its much smaller con-
stituent elements referred to as network motifs [Alon,
2007; Stone et al., 2019]. In technical terms, Milo et
al. [Milo et al., 2002] defined motifs as “patterns of in-
terconnections (or subgraphs) occurring in complex net-
works at numbers significantly higher than those in ran-

domized networks”. Their presence indicates the opera-
tion of underlying nonrandom structural or evolutionary
design principles that might have been involved in build-
ing the network. In this respect, the knowledge of dy-
namics and synchronization of network motifs can help
us in understanding self-organization of large networks
[Boccaletti et al., 2006].

Synchronization and control of dynamical systems
were studied by many researchers (for comprehansive
review see [Andrievskii and Fradkov, 2004; Boccaletti
et al., 2018]). Significantly less attention was paid to
synchronization in network motifs of coupled oscilla-
tors. In this respect, it is worth mentioning interesting
studies with Rössler [Kapitaniak et al., 2015], Rulkov
[Sausedo-Solorio and Pisarchik, 2017; Pisarchik et al.,
2019], Stuart-Landau [Karakaya et al., 2019], Hodgkin-
Huxley [Mirasso et al., 2017], and other models [Suresh
et al., 2016]. Concerning Duffing oscillators, we have to
mention the paper of Jaros et al. [Jaros et al., 2016], who
observed different bifurcation scenarios with respect to
the coupling strength in three unidirectionally coupled
Duffing oscillators.

In this paper, we study dynamics of simplest network
motifs formed by three Duffing oscillators. The Duff-
ing equation was introduced by German electrical engi-
neer Georg Duffing [Duffing, 1918] to describe forced
vibrations of industrial machinery. This prototypical
dynamical system was then successfully explored to
simulate various physical processes, such as stiffening
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Figure 1. Double-well potential Eq. (2) for a = −0.25 and b =
0.5 with minima at xDown = −0.7071 and xUp = 0.7071 and
a local maximum at x = 0.

Figure 2. Time series of Eq. (1) for γ = 0.4, a = −0.25, and
b = 0.5. Two stable fixed points xUp = 0.7071 and xDown =
−0.7071 are obtained using initial conditions (a) x(0) = −3 and
(b) x(0) = 3.

strings, beam buckling, nonlinear electronic circuits, su-
perconducting Josephson parametric amplifiers, ioniza-
tion waves in plasma, and biological processes [Laksh-
manan and Murali, 1996]. An interesting feature of this
oscillator is the coexistence of two stable limit cycles for
certain parameters.

It should be noted that synchronization and control
of systems with coexisting attractors is not an easy
task [Pisarchik et al., 2006; Pisarchik and Feudel,
2014]. Primary research of synchronization of bistable
Duffing oscillators was limited to only two oscillators
[Lakshmanan and Murali, 1996; Pisarchik and Jaimes-
Reategui, 2005]. It was found that for a certain coupling
strength these oscillators exhibit intermittent lag syn-
chronization, when the coupling is unidirectional [Pis-
archik and Jaimes-Reategui, 2005]. Notably, within time
windows, when the two oscillators stay in the same

state, anticipated synchronization occurs [Pisarchik et
al., 2006; Sausedo-Solorio and Pisarchik, 2014].

In spite of extensive research on synchronization in
coupled nonlinear oscillators [Boccaletti et al., 2018],
not many papers are devoted to synchronization and con-
trol of multistable systems (see, e.g., [Pisarchik et al.,
2006; Pisarchik and Feudel, 2014; Grubov et al., 2017;
Jaimes-Reategui et al., 2017; Magallon-Garcia et al.,
2017; Moskalenko et al., 2017] and references therein).
Since the Duffing oscillator is the prototypical model
which exhibits bistability, in this paper we use this oscil-
lator to study self-organization in network motifs formed
by bistable systems. For all possible configurations,
we show how synchronization emerges as the coupling
strength is increased, and how this system transforms
from multistable to monostable.

The rest of the paper is organized as follows. In Sec.
2 we describe the model of the bistable Duffing oscilla-
tor. Then, in Section 3 we present and classify all possi-
ble network motifs and derive their equations of motion.
Next, in Sections 4 and 5 we study synchronous dynam-
ics of network motifs coupled in linear and ring configu-
rations, respectively. Finally, in Section 6 we summarize
the results.

2 Duffing Oscillator
The Duffing equation is given as

d2x

dt2
+ γ

dx

dt
+ ax+ bx3 = f(t), (1)

where γ > 0 and f(t) = f sin(ωt). The variable x
describes the motion of a particle of unit mass in the po-
tential well

V (x) =
1

2
ax2 +

1

4
bx4 (2)

under external periodic force f(t) with period T =
2π/ω and strength f .

Depending on the relationship between parameters a
and b, three types of the potential well can be distin-
guished.

(i) a < 0 and b > 0. A double-well potential with

minima at x = +
−

√
|a|
b

and a local maximum at

x = 0.
(ii) a > 0 and b > 0. A single-well potential with min-

ima at equilibrium point x = 0.
(iii) a > 0 and b < 0. A double-hump potential well

with a local minimum at x = 0 and maxima at x =

+
−

√
|a|
b

.

Each one of the above three cases has become a classi-
cal model to describe inherently nonlinear phenomenon,
exhibiting a rich and baffling variety of regular (periodic)
and complex (chaotic) motions which can coexist. In this
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Figure 3. Network motifs in linear configuration representing (a)
auxiliar, (b) chain, (c) mixed slave, (d) mixed master, (e) competitive,
and (f) relay types of coupling schemes.

work we are interested in the first case shown in Fig. 1.
This double-well potential Eq. (2) with a = −0.25 and

b = 0.5 has minima at xDown = −
√
|a|
b

= −0.7 and

xUp =

√
|a|
b

= 0.7 and a local maximum at x = 0.

The time series of Eq. (1) obtained using two different
initial conditions are illustrated in Fig. 2. One can see
that the asymptotic states are two equilibria at xUp =
0.7071 and xDown = −0.7071.

3 Network Motifs
Network motifs can be thought of as recurring circuits

of interactions from which the networks are built [Alon,
2007]. Their presence indicates the operation of under-
lying nonrandom structural or evolutionary design prin-
ciples that might have been involved in building the net-
work [Stone et al., 2019].

In order to proceed, we define a few basic terms from
the network theory [Boccaletti et al., 2006]. Any net-
work or a graph may be studied in terms of its binary
adjacency matrix A. For a network with n nodes and
an n × n binary adjacency matrix A, Aij = 1 im-
plies that the i-th node is connected to the j-th node and
Aij = 0 otherwise. Undirected links impose no order
on the nodes that they connect; the adjacency matrix for
undirected networks is symmetric, i.e. Aij = Aji.

Network motifs formed by three coupled oscillators
can be classified into 13 different configurations [Boc-
caletti et al., 2018] shown Figs. 3 and 4. The coupling
can be either unidirectional, bidirectional, or combine.

Figures 3(a–f) represent network motifs formed by
three oscillators coupled in a line. In particular, the aux-

iliar coupling scheme (Fig. 3(a)) consists in one master
system (oscillator 2) and two slave systems (oscillators
1 and 3). Likewise, Fig. 3(b) shows the chain network
motif, where oscillator 2 is a slave of oscillator 3 and
at the same time a master of oscillator 1. Figures 3(c)
and 3(d) illustrate network motifs with mixed coupling
schemes. Here, oscillator 1 acts as either a slave (Fig.
3(c)) or a master (Fig. 3(d)) only. Meanwhile, the com-
petitive coupling schemes is shown in Fig. 3(e), where
oscillator 1 is a slave for both master oscillators 2 and
3. Finally, the mutual coupling configuration is shown
in Fig. 3(f) which is also referred to as a relay coupling
scheme.

Figure 4. Network motifs in ring configuration representing (a) uni-
directional auxiliar, (b) bidirectional competitive, (c) bidirectional aux-
iliar, (d) bidirectional mixed, (e) bidirectional double mixed, (f) bidi-
rectional chain, and (g) unidirectional chain coupling schemes.

The ring coupling schemes are shown in Fig. 4. In the
network motif shown in Fig. 4(a), all oscillators act si-
multaneously as a slave and a master. Instead, in the net-
work motif in Fig. 4(b) oscillator 1 is only a slave, while
other oscillators 2 and 3 are mutually coupled and act
as a master for oscillator 1 and as both for themselves.
Figure 4(c) shows the network motif where oscillator 3
is only a master for both oscillators 1 and 2 which are
mutually coupled. The motif in Fig. 4(d) in similar to
the motif in Fig. 4(a) with unidirectional coupling, but
in another direction. In the motif in Fig. 4(e) all oscilla-
tors act as a slave and a master, but only oscillators 1 and
2 are mutually coupled. Similarly, in Figs. 4(f) and 4(g)
all oscillators simultaneously act as a slave and a master,
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Table 1. Equations of motion for linear network motifs

Network

motif Equation of motion

Fig. 3(a) ẍ1 = −γẋ1 − ax1 − bx31 + σ(x2 − x1),

ẍ2 = −γẋ2 − ax2 − bx32,

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig. 3(b) ẍ1 = −γẋ1 − ax1 − bx31 + σ(x2 − x1),

ẍ2 = −γẋ2 − ax2 − bx32 + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33
Fig. 3(c) ẍ1 = −γẋ1 − ax1 − bx31 + σ(x2 − x1),

ẍ2 = −γẋ2 − ax2 − bx32 + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig. 3(d) ẍ1 = −γẋ1 − ax1 − bx31,

ẍ2 = −γẋ2 − ax2 − bx32
+σ(x1 − x2) + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig. 3(e) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32,

ẍ3 = −γẋ3 − ax3 − bx33
Fig. 3(f) ẍ1 = −γẋ1 − ax1 − bx31 + σ(x2 − x1),

ẍ2 = −γẋ2 − ax2 − bx32
+σ(x1 − x2) + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

but in Fig. 4(f) two oscillators (1 and 3) are unidirection-
ally coupled and in Fig. 4(g) all oscillators are mutually
coupled.

In Tables 1 and 2 we present the equations of motion
for linear and ring network motifs shown in Figs. 3 and
4, respectively.

4 Dynamics of Linear Motifs
For numerical simulations, the second-order equations

of motion given in Tables 1 and 2 were converted into the
first order equations using the change of variable ẋ→ y.
In Fig. 5 we show the bifurcation diagrams of local
maxima of x1, x2, and x3 with respect to the coupling
strength σ for six linear motifs using zero initial condi-
tions for variables y (y1 = y2 = y3 = 0) and different
initial conditions CI-i (i = 1, . . . , 6) for variables x1, x2,
and x3 presented in Table 3.

4.1 Bifurcation Diagrams of the Auxiliar Motif
For initial conditions CI-1, the local maxima of the

state variable x1 always takes the value of x1 = −0.7071

for all coupling strengths (black dots in Fig. 5A-(i)). At
the same time, the local maxima of the state variable x2
for the same initial conditions are equal (black dots in
Fig. 5A-(ii)). By contrast, the local maxima of the state
variable x3 (black dots in Fig. 5 A-(iii)) take the value
of x3 = 0.7071. One can see from Fig. 5 A-(iii) that the
local maxima first begin slowly decreasing as the cou-
pling strength σ is increased up to σth = 0.06 and then
switch to x3 = −0.7071. This result can be explained
by the fact that the auxiliar motif shown in Fig. 3 (a)
is composed by one master (oscillator 2) and two slave
systems (oscillators 1 and 3). Therefore, regardless ini-
tial conditions the slave oscillators driven by the master
are attracted to the master’s attractor when the coupling
strength σ is increased and reaches a threshold value of
σth = 0.06.

The bifurcation diagrams of the same motif for other
initial conditions from Table 3 are shown in Fig. 3(a) by
other colors, in particular, for the initial conditions CI-2
(blue dots), CI-3 (red dots), CI-4 (green dots), CI-5 (yel-
low dots), and CI-6 (purple dots). One can in Figs. 5A
(i)–(iii) that the master system (oscillator 2) either stays
in one the coexisting attractors xdown = −0.7071 or
xup = 0.7 (see Fig. 1) or the slave oscillators (oscillators
1 and 3) stay in the master’s attractor when the coupling
strength σ reaches the threshold value of σth = 0.06.

4.2 Bifurcation Diagrams of the Chain Motif
Figures 5B (i)–(iii) show the bifurcation diagrams for

the chain network motif illustrated in Fig. 3(b). Start-
ing from initial conditions CI-1 (see Table 3) x1(0) =
x2(0) = −0.7071 and x3(0) = 0.7071, the variables
x1 and x2 slowly change as the coupling strength is in-
creased up to σth = 0.06 and for higher values of σ these
variables suddenly switch to x1 = x2 = 0.7071 (black
dots in Fig. 5B (i)–(ii)), while x3 remains the same
(black dots in Fig. 5B (iii)). This result is expected since
both oscillators 1 and 2 are slaves and driven by the oscil-
lator 3. The driving first affects the oscillator 2 because
it is a slave of the oscillator 3. In Fig. 5B (i) black dots
show how the process is realized, namely, x2 changes
from x2 = −0.7071 to x2 = −0.42 as σ approaches
σth = 0.06. As σ is further increased, the oscillator 3
drives the oscillator 1 thought the oscillator 2 because the
oscillator 1 is a slave of the oscillator 2. This situation
is illustrated in Fig. 5B (ii) by black dots which show
the change of x1 from x1 = −0.7071 to x1 = −0.67 as
σ approaches σth = 0.06. For σ > 0.06 the both vari-
ables x2 and x1 are driven by the oscillator 3, that leads
to their sudden switch to x1 = x2 = x3 = 0.7071.

4.3 Bifurcation Diagrams of the Mixed Master Mo-
tif

Figures 5C (i)–(iii) show the bifurcation diagrams of
the mixed master motif presented in Fig. 3(c). In this
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Table 2. Equations of motion for ring network motifs

Network

motif Equation of motion

Fig.4(a) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32,

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig.4(b) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32 + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig.4(c) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32
+σ(x2 − x2) + σ(x1 − x2),

ẍ3 = γẋ3 − ax3 − bx33
Fig.4(d) ẍ1 = −γẋ1 − ax1 − bx31

+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32
+σ(x1 − x2) + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33
+σ(x1 − x3) + σ(x2 − x3)

Fig.4(e) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2γẋ2 − ax2 − bx32 + σ(x1 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig.4(f) ẍ1 = −γẋ1 − ax1 − bx31
+σ(x2 − x1) + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32
+σ(x1 − x2) + σ(x3 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Fig.4(g) ẍ1 = −γẋ1 − ax1 − bx31 + σ(x3 − x1),

ẍ2 = −γẋ2 − ax2 − bx32 + σ(x1 − x2),

ẍ3 = −γẋ3 − ax3 − bx33 + σ(x2 − x3)

Table 3. Initial conditions CI-i (i = 1, . . . , 6) used for simulations
of equations of motion presented in Table 1.

CI−i x1(0) x2(0) x3(0)

CI-1 -0.7071 -0.7071 0.7071

CI-2 -0.7071 0.7071 -0.7071

CI-3 -0.7071 0.7071 0.7071

CI-4 0.7071 -0.7071 -0.7071

CI-5 0.7071 -0.7071 0.7071

CI-6 0.7071 0.7071 -0.7071

motif the oscillator 1 acts as a slave only, but the os-
cillators 2 and 3 are mutually coupled. The bifurca-
tion diagrams in Fig. 5C (i) are constructed for CI-
1 (black dots), CI-6 (purple dots), CI-2 (blue dots),
and CI-5 (yellow dots) initial conditions, i.e., the ini-
tial conditions for the variables x2 and x3 have differ-
ent signs, i.e. x2(0) = −0.7071 and x3(0) = 0.7071
or in reverse, while the variable x1 starts either from
x1(0) = −0.7071 or x1(0) = 0.7071. For exam-
ple, for initial conditions CI-1 (black point in Fig. 5C
(i)) with x1(0) = −0.7071, x2(0) = −0.7071, and
x3(0) = 0.7071 the local maxima of x1 grow from neg-
ative to positive values, as the coupling strength σ is in-
creased and reaches σ = 0.17. A further increase in
σ results in decreasing x1 up to zero for σth = 0.25,
and then x1 remains zero, as σ is further increased. An
inverse behavior is observed for initial conditions CI-6
(purple dots), when the local maxima of x1 decreases
from positive to negative values, as σ is increased and
reaches σ = 0.17. A further increase in σ results in
increasing x1 up to zero, i.e., x1 = 0 for σth = 0.25
and remains constant as σ is increased. We should note
that the transition of x1 from either x1(0) = −0.7071
or x1(0) = −0.7071 to a new fixed point x1 = 0 needs
a higher value of σth = 0.25, i.e., the system is more
resistant to a change in the coupling strength.

On the other hand, one can see in Fig. 5C (i) that the
bifurcation diagrams CI-2 (blue dots) and CI-5 (yellow
dots) behave the same as the bifurcation diagrams CI-
2 (black dots) and CI-5 (purple dots), respectively, but
with the difference that the transition of x1 from either
x1(0) = 0.7071 or x1(0) = −0.7071 to the new fixed
point x1 = 0 does not pass through zero. Also, x1 ap-
proaches x1 = 0 for a weaker coupling (σth = 0.13)
because the initial condition for x2 has opposite sign
than for x1 and x3. Likewise, as x2 acts as a master for
the oscillators 1, the oscillator x3 acts as both a master
and a slave. As σ is increased, a strong competition be-
tween x2 and x3 arises, since initially they had opposite
signs and consequently x1 goes faster to the fixed point
x1 = 0.



36 CYBERNETICS AND PHYSICS, VOL. 9, NO. 1, 2020

Figure 5. Bifurcation diagrams of local maxima using coupling strength σ as a control parameter for linear network motifs presented in Fig. 3.
Coexisting attractors are shown by different colors.

The last results can be explained as follows. The Duff-
ing oscillator with parameters used in this work has an
unstable fixed point x = 0 and two stable fixed points
xdown = −0.7071 and xup = 0.7071 (see Fig. 1),
which we take as initial conditions x1(0) = −0.7071
and x1(0) = 0.7071. Likewise, in Fig. 5 C (i) x1 start-
ing from any of the stable fixed points xdown or xup ap-
proaches the new stable fixed point x1 = 0 as the cou-
pling strength σ is increased and reaches σth. Such a be-
havior results from the fact that the oscillators 2 and 3 are
mutually coupled and have initial conditions of opposite
signs. Therefore, there is a strong competition between
them. When σ approaches σth, both x2 and x3 tend to-
ward the same new fixed point x2 = x3 = 0. Moreover,
as the oscillator 1 is a slave only and it is driven by the
oscillator 2, x1 changes to the new fixed point x1 = 0.

In addition, the oscillators 1, 2, and 3 being uncoupled
have unstable fixed point x = 0, whereas when they are
coupled in the network motif shown in Fig. 3(c) and the
coupling strength reaches the threshold value σth, this
unstable fixed point x = 0 becomes stable.

By contrast, for the initial conditions corresponding to
CI-3 (red dots) and CI-4 ( green dots), the bifurcations
diagrams of x1 shown in Fig. 5C (i)–(iii) have a com-
pletely different behaviour than for the initial conditions
CI-1 (black dots), CI-6 (purple dots), CI-2 (blue dots),
and CI-5 (yellow dots). Since the oscillators 2 and 3
are mutually coupled and their initial conditions have the
same sign, they do not change, i.e. x2 = x3 = 0.7071
or x2 = x3 = −0.7071 as the coupling strength σ is in-
creased. At the same time, since the oscillator 1 is a slave
only, x1 is driven by the oscillators 2 and 3 and as a result
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it changes to x1 = 0.7071 or x1 = −0.7071 when its ini-
tial conditions are x1(0) = −0.7071 or x1(0) = 0.7071,
respectively.

As can be observed in the bifurcation diagrams shown
in Figs. 5C (ii) and (iii), x2 and x3 behave similarly.
In particular, the bifurcation diagram CI-1 (black dots),
CI-6 (purple dots), CI-2 (blue dots), and CI-5 (yellow
dots) correspond to the mutually coupled oscillators 2
and 3 with initial conditions of opposite sign, and there-
fore there is a strong competition between them as σ is
increased approaching σth = 0.13 where the both state
variables x2 and x3 tend toward the same new fixed point
x2 = x3 = 0 (see Figs. 5C (ii) and (iii)). At the same
time, in the bifurcation diagrams CI-3 (red dots) and CI-
4 ( green circle) x2 and x3 with initial conditions of the
same sign remain the same, either x2 = x3 = 0.7 or
x2 = x3 = −0.7 as σ is increased (see Figs. 5C (ii) and
(iii)).

4.4 Bifurcation Diagrams of the Mixed Slave Motif
In Figs. 5D (i)–(iii) we plot the bifurcation diagrams

of the local maxima of the state variable x1, x2, and x3
of the oscillators 1, 2, and 3, respectively, corresponding
to the mixed slave network motif presented in Fig. 3(d)
and their evolution equations shown in Table 1. These
diagrams start from x1(0) = x2(0) = −0.7071 and
x3(0) = 0.7071 corresponding to the initial condition
CI-1 (see Table 3). Since the oscillators 2 and 3 are mu-
tually coupled, they act as both a master and a slave.
However, for σ > 0.07 these state variables x2 and x3
are driven by the oscillators 1 and change their values
to x1 = x2 = x3 = −0.7071 (black dots). A sim-
ilar behaviour is observed in the remaining bifurcation
diagrams CI-2 (blue dots) for σth = 0.03, CI-3 (red
dots) for σth = 0.09, CI-4 (green dots) for σth = 0.09,
CI-5 (yellow dots) for σth = 0.03, and CI-6 (purple
dots) for σth = 0.07 in Figs. 5D (i)– (iii), where again
the oscillator 1 is a master only and the oscillators 2
and 3 are mutually coupled. As a result, the state vari-
able x2 and x3 adjust their behavior to each other when
σ < σth, and for σ > σth they change their value to
x2 = x3 = x1 = −0.7071 because of the driving by the
oscillator 1. The value of the threshold coupling strength
σth depends on the initial conditions (see Table 3).

4.5 Bifurcation Diagrams of the Competitive Motif
The bifurcation diagrams in Figs. 5E (i)–(iii) show

the local maxima of x1, x2, and x3 for the competitive
network motif illustrated in Fig. 3(e). Their evolution
equations are present in Table 1. The bifurcation dia-
grams in Figs. 5E (i) and 5C (i) have similar behaviours,
they possess a strong dependence on initial conditions.
Since the oscillators 2 and 3 are only masters for the
oscillators 1 and their initial conditions have opposite
signs x1(0) = −0.7071 or x1(0) = 0.7071 (CI-1 – CI-
6 and CI-2 – CI-5 in Table 3), there is a strong com-
petition with the oscillator 1 as σ is increased. When

σ approches σth the oscillator 1 tends toward a new
fixed point x1 = 0 due to the driving by the oscilla-
tors 2 and 3 (see the bifurcation diagrams CI-1 (black
dots) – CI-6 (purple dots) and CI-2 (blue dots) – CI-5
(yellow dots) in Fig. 5E (i)). One can see that the bi-
furcation diagrams constructed for the initial conditions
CI-3 and CI-4 (see Table 3) differ from the diagram for
the initial conditions described above. The master os-
cillators 2 and 3 starting from the same initial condition
(x2 = x3 = 0.7071 or x2 = x3 = −0.7071) conserve
this value as σ is increased, whereas the slave oscillator
1 changes to x1 = 0.7071 or x1 = −0.7071 depend-
ing on the initial condition either x1(0) = −0.7071 or
x1 = 0.7071 (CI-3 (red dots) and CI-4 (green dots)).

In the bifurcation diagrams in Figs. 5E (ii)–(iii), x2 and
x3 also conserve their values as σ is increased, because
the both oscillators are masters for the oscillators 1 and
start from the same initial conditions (see Table 3), i.e.
x2 = x3 = 0.7071 or x2 = x3 = −0.7071 (CI-1 (black
dots), CI-2 (blue dots), CI-3 (red dots), CI-4 (green dots),
CI-5 (yellow dots) and CI-6 (purple dots)).

4.6 Bifurcation Diagrams of the Relay Motif
The bifurcation diagrams for the relay network motif

presented in Fig. 3(f) are shown in Figs. 5F (i)–(iii).
When two state variables x1 and x3 start from the same
initial conditions (see Table 3, they conserve their val-
ues as σ is increases, whereas x2 starting from different
initial condition is driven by the oscillators 1 and 3 up
to σ = σth which depends on the initial conditions. In
particular, starting from x1(0) = x2(0) = −0.7071 and
x3(0) = 0.7071 (initial condition CI-1) both x1 and x2
increase as the coupling strength grows up to σth = 0.03
for x1 and σth = 0.07 for x2, and then with a further in-
crease in σ they return again to x1 = x2 = −0.7 and
conserve this value (black dots in Figs. 5F (i) and (ii),
respectively). However, the state variables x3 starting
from x3(0) = 0.7071 first decreases as σ is increased
and reaches σth = 0.07 and then for σ > 0.07 this vari-
able approaches x3 = −0.7071 as σ is further increased.
A similar behaviour is also observed in other bifurca-
tion diagrams constrained for CI-2 (blue dots), CI-3 (red
dots), CI-4 (green dots), CI-5 (yellow dots), and CI-6
(purple dots) in Figs. 5F (i)–(iii).

5 Dynamics of Ring Motifs
In Fig. 6 we plot the bifurcation diagrams of the local

maxima of the variables x1, x2, and x3 for seven ring
configurations of the networks motifs presented in Fig.
4, as a function of the couple strength σ for six different
initial conditions CI-i i = 1, . . . , 6 (see Table 3).

Looking at the bifurcation diagrams for the ring mo-
tifs, one can notice that the dynamics of the motifs
presented in Figs. 4(a,c,f) are more poor than others.
These configurations belong to unidirectional auxiliar,
bidirectional auxiliar, and bidirectional chain coupling
schemes. For these motifs, the whole system exhibits the
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Figure 6. Bifurcation diagrams of local maxima using coupling strength σ as a control parameter for ring network motifs presented in Figs.
4(a–f). Coexisting attractors found using different initial conditions are shown by different colors: CI-(black dots), CI-2 (blue dots), CI-3 (red
dots), CI-4 (green dots), CI-5 (yellow dots), and CI-6 (purple dots).

coexistence of only two stable fixed point for σ > 0.05.
A single limit cycle exists only for very small coupling
(σ < 0.05). This can be explained by the fact that in
these configurations all oscillators act as one, even when
the coupling is not very strong.

Instead, the motifs presented in Figs. 4(b,d,e) (bidi-
rectional competitive, bidirectional mixed, and bidirec-
tional double mixed) display very rich dynamics due to
a strong competition between the oscillators. For these
schemes we observe the coexistence of three attractors.
For relatively small coupling (σ < 0.15) two fixed points
coexist with a limit cycle, whereas for stronger coupling
the limit cycle converts into a zero steady state in the
Hopf bifurcation.

The most complex dynamics is observed for the unidi-
rectional chain motif presented in Fig. 4(g). Its bifurca-
tion diagrams are shown in Figs. 7 (i)–(iii) for different
initial conditions CI-(black dots), CI-2 (blue dots), CI-
3 (red dots), CI-4. In this motif, each oscillator acts
simultaneously as a master and as a slave. Likewise,
regardless a sign of the initial conditions there are two
Hopf bifurcation points where the oscillators begin os-
cillate with the same frequency (at σ = 0.36) and then
another frequency appears (at σ = 0.48), as the coupling
strength is increased.

These results confirm previous observations on the
route to quasiperiodicity in ring motifs of discrete sys-
tems formed by logistic [Pisarchik et al., 2019] and
Rulkov maps [Sausedo-Solorio and Pisarchik, 2017].
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Figure 7. Bifurcation diagrams of local maxima using coupling
strength σ as a control parameter for the unidirectionally chain mo-
tif presented in Fig. 4(g). The colors correspond to the same initial
conditions as in Fig. 6. HB and HP are Hopf bifurcations where a
periodic and a quasiperiodic orbits are born.

6 Conclusion
We have studied dynamics of network motifs formed

by three Duffing oscillators coupled in different con-
figurations. The bifurcation analysis have shown that
depending on the coupling strength and configuration,
these motifs can exhibit either monostability, bistability,
or multistability. We have demonstrated different scenar-
ios from bistability to monostability with respect to the
coupling strength for all possible configurations.

The richest dynamics is observed in the unidirection-
ally chain motif. Apart from bistability, this configura-
tion allows transitions to periodicity and quasiperiodic-
ity, as the coupling strength is increased.

We believe that the obtained results have a general
character for this class of systems, since similar dy-
namics has been found in other ring-coupled oscillators
[Pisarchik et al., 2019; Sausedo-Solorio and Pisarchik,

2017].
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