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Abstract. 
 

The aim of this paper is to bring to light the properties provided to the phase plane by 
a generic two dimensional periodic autonomous dynamical systems (PADS) vectorfield. An 
associated periodic parameters linear equation (APPLE) is defined in each point of the phase 
plane. It is shown that the local behavior of the initial PADS trajectories is related to the value 
the Floquet - Liapunov exponents of this APPLE. A method to compute the Floquet - 
Liapunov exponent value without integration is used. So, it is possible to predict some 
characteristic patterns of trajectories as funneling, resonance, period doubling, sensitivity to 
initial conditions. Moreover, the equation of a manifold periodically crossed by the solutions 
is carried out. The method is applied to periodic Van der Pol and Duffing equations. 

 
 

1. Introduction 
 
1.1.  General presentation. Most of dynamical systems studied since several decades have 
constant parameters and it is well known that some simple and generic differential equations 
exhibit very complex solutions including chaotic attractors. The simplest and the most famous 
example leading to very different and very complex situations is the Chua model, (E. Bilotta 
and P. Pantano [2008]). The introduction of time varying coefficients provides an additional 
degree of complexity. Nevertheless it is impossible to avoid periodic parameters to study, for 
example, the population evolution of species interacting in an open environment, because 
particularly the birthrates depend on temperature and photometry which evolve daily and 
yearly. Other models used in biology to study natural rhythms, or in meteorology to take in 
account the time variations of physical parameters, or in electronics, involve periodic 
coefficients. 
This paper deals on generic two dimensional parametric autonomous dynamical systems 
(PADS). Tracking the trajectory would need more and more precise numerical and analytical 
tools and does not help so much to understand the global solution behavior. The method 



proposed in this work is based on the properties conferred by the velocity vectofield to each 
point of the phase plane. At first, some features of the solutions are deduced from the values 
of the Floquet-Liapunov exponents of an associated periodic parameter linear equation 
(APPLE). In some domain of the phase plane, the solutions exhibits characteristic patterns 
which are related to the value of Floquet-Liapunov exponents, as funneling, resonance, period 
doubling, sensitivity to initial conditions. Then, an associated constant coefficient equivalent 
equation (ACCES) is defined so as its characteristic exponents are the Floquet-Liapunov of 
the APPLE. Former works are used to establish the equation of an invariant manifold of the 
ACCES which is periodically crossed by the trajectories of the initial PADS. The last part is 
devoted to applications of the method to Van der Pol and Duffing equations. 
 
1.2. The model. This work deals on periodic autonomous dynamical system (PADS) :  
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The mappings ���, 	, 
� and ���, 	, 
) are supposed to satisfy the condition of existence and 

unicity of solutions of (1). 
 
 

2. Local properties of solutions  
 
2.1. Associated periodic parameter linear equation (APPLE). Let ���
� and �	�
� be 
small spatial variations around ��
� and 	�
�. The locally associated periodic parametric linear 
equation (APPLE) is defined as  
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where ����, 	�: �� � ��, ��, 	, 
� � ����, 	� is the Jacobian matrix of the PADS in ��, 	�. ����, 	� is as well T-periodic with respect to t. 
 
2.2. The Floquet theory. According to the Floquet - Liapunov theorem, the solution of 
APPLE is a linear combination of two modes : 
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where '( � )  is the Floquet - Liapunov exponent and "(�
� and $(�
�: � � �, 
 � "(�
� and $(�
�, are T-periodic mappings, continuous and derivable in �� with respect to t, k = 1, 2. Of 
course, '(, "(�
�, $(�
� depend on ��, 	�. There are values of (x, y) for which one of the 
Floquet - Liapunov exponent, for example '&, has a larger negative real part. Now, the 
variation of the real part of the Floquet-Liapunov exponent is smooth with respect to the 
coordinates ��, 	� of the location where they are computed. Then, in the corresponding domain 
of the phase plane, the associated mode vanishes and the APPLE has therefore a monomodal 
solution related to  '#. The first aim of this work is to find the locus in the phase plane (x, y) 
where the behavior of the solution of the PADS tends to the remaining mode of APPLE.   
 
2.3.  Proposition 1. Let *���
�, �	�
�+, such a monomodal solution of APPLE related to 
the Floquet - Liapunov exponent  ' : 
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For any point ��, 	� of the phase plane, we consider the time 
-, if it exists, such as the 
corresponding solutions follow the initial conditions 
 "��
-� � 0  and  $� �
-� � 0               (6) 
 
Then, ' is an eigenvalue of ��/��, 	� and the related eigenvector is 
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In other words, the following relationship holds 
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Sketch of proof. The derivative of (5) consists of two terms. According the hypothesis (6), one 
of them is null. For a more complete demonstration, see B. Rossetto and Y. Zhang, 2009. 
 
2.4. Different patterns of PADS solutions in the phase plane. Let us consider the domain 
of the phase plane where the solution of APPLE is monomodal. Such a domain can be large 
because the spatial variation of the Floque-Liapunov exponent is smooth. The solutions are 
funneled if its real part is negative, sensitive to initial conditions if positive. According the 
value of the imaginary part, period doubling or resonances can be observed.  
 

The exact value of the Floquet-Liapunov exponent of the APPLE is computed using a fast 
algorithm, without integration (B. Rossetto, 2006) 
 



3. Associated constant coefficient equivalent system (ACCES) 
 
3.1. Definition. The ACCES is the non linear dynamical system with constant coefficients 
defined on 
 � 
- 
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where the mappings ���, 	, 
-� and ���, 	, 
-� :  �& � �, ��, 	� � � and �, are the same as in 
the definition of the initial periodic dynamical system (1) for 
 � 
-. 
 
3.2.   Proposition 2. Invariant manifold of the ACCES. The manifold 0��, 	� � 0 of the 
ACCES is locally defined as the locus in the phase plane �0, �, 	� where we can find a value of 
- such that the Floquet - Liapunov exponent of the monomodal solution of APPLE ' is a real 
eigenvalue of the Jacobian matrix ��/��, 	�. Then the equation of the manifold  0��, 	� � 0 is 
given by 
 

 
1�2,3,�/�
4�2,3,�/� � 5��/�

6��/�             (10) 

 
Moreover, on this manifold, the periodic part "(�
� and $(�
� of monomodal solutions of 

APPLE verify "��
-� � 0 and $� �
-� � 0. 
 
Proof. This proposition uses former results to work out the manifold equation of autonomous 
dynamical systems (Rossetto & al. [1998] and B. Rossetto and Y. Zhang, 2009). 
 
3.3.   The flow curvature theory. According another simple and general way, called the 
flow curvature method [Ginoux, 2009], the manifold 0��, 	� � 0 of ACCES is defined as the 
location of points on which the curvature is null. This theory applies for nth-order dynamical 
systems. In this case, if 7�
� is the velocity and Γ�
� the acceleration of the ACCES system, 
according the flow curvature method, the invariant manifold Φ��, 	� � 0 of this system has a 
null local curvature. For second order systems, this implies: 
 
 Γ�t-� ; 7�t-� � 0             (11) 
 
Thus, the acceleration of the motion along the manifold is collinear to the eigenvector (7). The 
attractive part of this manifold, defined by 7�t-�. �=>?�0� @ 0, is an invariant manifold of 
ACCES.         
 
3.4. Proposition 3. The manifold crossing problem. The trajectories of  PADS cross the 
invariant manifold 0��, 	� � 0 of ACCES at 
- � �� with a null transversal acceleration and, 
therefore, a maximal transversal velocity. 
 



Proof. The acceleration at 
- or 
- � �� is collinear to the velocity, itself collinear to the 
eigenvector. Thus the transverse component of the acceleration is null (B. Rossetto and Y. 
Zhang, 2009). 
 
3.5. Proposition 4. The trajectory inflexion problem. If A�B'&C D 0 and EFB'#C G 0, then 
the local curvature of the trajectory of PADS in the phase plane changes on the manifold 
defined by A�B'#C � 0. In other words, there is an inflexion point on this manifold while the 
sign of A�B'#C changes. 
 
Sketch of proof. If A�B'#C @ 0 (resp. D 0), the curvature of the trajectory is positive (resp. 
negative). There is an inflexion point for A�B'#C � 0. 
 
 

4. Examples 
 
4.1. The Fig. 1 (parametric resonance), Fig. 2 (funneling and sensitivity to initial conditions) 
and Fig. 3 (periodic solution)  concerns the Van der Pol parametric periodic system : 
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4.2. The Fig. 4 shows the inflexion locus of the parametrically driven double-well 
Duffing equation : 
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 ># �  1.333 333 33;  T �  5 
Fig. 1.  Periodic Van der Pol equation 

(resonance). In green : the cubic, blue : 
the slow manifold, red : the manifold 
periodically crossed by the trajectories. 

># �  30;   T �  0.08929   Fig. 2. Periodic Van der Pol equation 

(funneling). 

># �  30;   T �  0.08929   Fig. 3. Periodic Van der Pol equation 

(periodic solution). 

Fig. 4. Parametrically driven double-well 
Duffing equation. The locus of inflexion points � � e0.57595 only depends on x. 

 


