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Abstract

We present an analysis of a two-plane automatic bal-

ancing device for rigid rotors. Ball bearings, which are

free to travel around a race, are used to eliminate im-

balance due to shaft eccentricity or misalignment. Here

we consider the effect that asymmetries such as support

anisotropy have on the auto-balancing process. Stabil-

ity diagrams show that the device is robust to the con-

sidered asymmetries when the rotation speeds are su-

percritical and the mass imbalance is small.
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1 Introduction

An automatic ball balancer (ABB) is a device which

reduces vibrations in rotating machinery by compen-

sating for the mass imbalance of the rotor. The ABB

consists of a series of balls that are free to travel around

a race which is set at a fixed distance from the shaft.

During balanced operation the balls find such positions

that the principal axis of inertia is repositioned onto the

rotational axis. Because the imbalance does not need

to be determined beforehand ABB’s are ideally suited

to applications where the amount of imbalance varies

with the operating conditions. For example, automatic

balancers are currently used in optical disk drives, ma-

chine tools and washing machines.

The idea behind automatic balancing has been with

us since the early part of the last century and the exis-

tence of a stable balanced steady state at rotation speeds

above the first critical frequency has long been known

[Thearle, 1932]. However, in some cases the ABB may

not balance the system even when operating at super-

critical rotation speeds [Chung and Ro, 1999]. The

autobalancing concept has also been extended to in-

clude two-plane devices that can compensate for both

shaft eccentricity and shaft misalignment [Hedaya and

Sharp, 1977], see Fig 1. Misalignment induces tilting

vibrations and so models based on a 4DOF rotor which

include gyroscopic effects must be considered [Sper-

ling et al., 2002; Chung and Jang, 2003; Chao et al.,

2003]. In a previous study we use Lagrange’s method

and rotating coordinates to derive an autonomous set of

governing equations [Rodrigues et al., 2008]. A sym-

metric system is then considered and numerical con-

tinuation techniques are used to map out the stability

boundaries of the balanced state in various parame-

ter planes. The setup on a real machine is, however,

usually asymmetric, for example the supports may be

anisotropic or have different stiffnesses [Ryzhik et al.,

2004]. Here we shall extend our work by considering

the effect of these asymmetries.

The rest of this paper is organised as follows. In sec-

tion 2 we present and discuss the equations of motion

for the ABB. The steady states of the system are con-

sidered in section 3, and we focus on using numeri-

cal bifurcation theory to investigate the effect that the

physical parameters have on the stability of the bal-

anced state. Finally, in section 4 we draw conclusions

and discuss possible directions for future work.

2 Equations of Motion

The setup of the ABB is illustrated in Fig. 1, and is

based on a rigid rotor which has been fitted with a two-

plane automatic balancer. The rotor has massM , mo-

ment of inertia tensor diag[Jt, Jt, Jp], and is mounted
on two compliant linear bearings which are located at

S1 and S2. The automatic balancer consists of a pair
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Figure 1. Schematic diagram of a two-plane automatic balancer.



of races that are set normal to the shaft in two sepa-

rate planes. Each race contains two balancing balls of

mass mi, which move through a viscous fluid and are

free to travel, at a fixed distance Ri from the shaft axis.

The position of the ith ball is also specified by the axial

and angular displacements zi and αi, which are written

with respect to the Cξηz rotor axes.

For a fixed rotational speed Ω the equations of motion
can be written in the inertial space frame as
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Here x = [x, φy, y,−φx]
T

is the vector of the rotor

degrees of freedom,1[xk, yk] = [x + zkφy, y − zkφx]
are the race centre positions and ϕk = Ωt + αk are the

angular displacements of the balls with respect to the

non-rotating Cxyz axes. The mass, gyroscopic, and

damping and stiffness matrices in the x-direction are

given respectively by
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Similar expressions can be written forCy andKy , and

the mass imbalance and ball vectors are given by

fI =

[

Mǫeiβ1

χ (Jt − Jp) eiβ2

]

and fbk
=

[

mkRk
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.

Here ǫ and χ are the rotor eccentricity and misalign-

ment respectively and β1,2 are the fixed phases of these

imbalances with respect to the rotor ξ axis. Finally

cb is the viscous damping of the balls in the race as

they move through the fluid. By taking mk = 0 in
(1), we recover the equations of motion for a four de-

gree of freedom rotor on anisotropic supports [Genta,

2005]. Note that we have used −φx instead of φx so

1As defined in [Genta, 2005]

that the equations take a more regular pattern and we

have also implicitly assumed that the supports are or-

thotropic with the same axes of elasticity, namely x

and y. Next, by setting the tilt angles φx = φy ≡ 0,
the system reduces to the equations of motion for the

planar automatic balancer [Green et al., 2006a]. If the

supports are isotropic i.e Kx = Ky and Cx = Cy ,

then the equations of motion can be made autonomous

by transforming into the rotating frame. This aids the

stability analysis of the steady states because circular

whirls transform to fixed points. In previous studies

we included the effect of geometric nonlinearities due

to the inclinational rotor degrees of freedom φx and φy.

However, by comparing stability charts and simulations

we have found that these nonlinearities are negligible

compared to those which are due to the ball angles αi,

hence, as is usual in rotordynamics, equation (1) is lin-

earised with respect to the rotor coordinates. Finally

we note that the effects of gravity and non constant spin

speeds lie outside the scope of the present study, if in-

terested we refer the reader to [Chung, 2005].

3 Stability of the Balanced Steady State

Steady state solutions are obtained by setting all time

derivatives in the equations of motion (1-2) to zero.

Moreover, if we also set the vibrational coordinates

x = 0, we arrive at the following condition for a bal-

anced steady state

fI +

4
∑

k=1

fbk
eiαk = 0. (3)

Of course this equation simply states that the forces and

moments acting on the rotor due to the imbalance and

balancing balls must be in equilibrium. The solution

is physically unique and exists provided that the balls

have a mass large enough to cope with the imbalance.

The ball positionsα = α
∗ can be determined in closed

form but the equations are long and so are not pre-

sented here. Next we shall use the continuation pack-

age AUTO [Doedel et al., 1997] to compute bifurcation

diagrams of the full nonlinear system (1-2) which show

the regions of stability of the balanced state (3) in var-

ious parameter planes. The boundaries of stability are

formed by Hopf bifurcations which mark the onset of

rotor vibrations.

For the remainder of this study we consider an ABB

model with the following parameters

M = 1, Rk = R = 1, k11 = 1, Jt = 3.25,

Jp = 0.5, l1 = −l2 = 3, z1,2 = −z3,4 = 2,

mk = m, c̄b ≡
cb

m
= 0.01, and c = 0.02

where Cx = cKx and Cy = cKy. (4)

The first three constraints are simply rescalings which

make the equations identical to the nondimensionalised



version. The inertial parameter values are based on

a solid cylindrically shaped rotor with a height of six

times its radius. A rotating machine on compliant bear-

ings with this geometry would typically undergo a two-

plane balancing procedure before going into service.

When the stiffness and damping matrices have no

off-diagonal terms the rotor’s translational and inlina-

tional degrees of freedom remain coupled, though only

through the motion of the balancing balls. This situa-

tion can occur, for instance, in the case of a rigid rotor

on two equal bearings with the center of mass exactly

at the midspan. For the following stiffness matrices

Kx = Ky =

[

1 0
0 9

]

, (5)

the approximate critical frequencies for the cylin-

drical and conical whirls occur respectively at

Ω1 =
√

k11

M
= 1 and Ω2 =

√

k22

Jt−Jp
≃ 1.81.
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Figure 2. Panels (a) and (b) show stable regions of the balanced

state (shaded) upon variation of the imbalance against Ω, whilstm
is also varied so that α∗ remains constant. The vertical scale is

logarithmic and the support parameters are given by equation (5).

Figure 2(a) shows the stability diagram for a static im-

balance. The eccentricity ǫ, is plotted against Ω, whilst
we also vary the ball mass so that m = ǫ. Thus, the

mass of the balls scales with the imbalance and the bal-

anced state α
∗ does not change value. A logarithmic

scale is used for the vertical axis so that a wide range of

eccentricities can be considered. The main area of in-

terest for applications occurs where there is a large con-

nected stable region for small eccentricities and super-

critical rotation speeds. The Hopf curve which bounds

this region asymptotes towards Ω = Ω2 as ǫ → 0,
hence there is no stable region in the subcritical regime.

A similar plot is illustrated in Figure 2(b) for a dynamic

imbalance case withm = ǫ + χ, ǫ = χ and a constant

phase β1 = 1. Here we see that the regions of stability
remain largely unchanged, however extra Hopf insta-

bility curves are present. These arise because the intro-

duction of a small misalignment breaks the symmetry

between the two races.

Next we consider the case where the stiffness matri-

ces remain isotropic but have off-diagonal terms. This

would occur, for example when the bearings have un-

equal stiffnesses or where the centre of mass is not at

the midspan. We take

Kx = Ky =

[

1 3
3 45

]

, (6)

which yields Ω1 ≃ 0.89 and Ω2 ≃ 4.07, for the critical
speeds linked with the cylindrical and conical whirls re-

spectively. Figure 3(a) shows the results for a static im-

balance and as Fig. 2, bifurcation curves asymptote to

the critical frequencies as the ball mass and eccentricity

tend to zero. The stable regions in the high eccentricity

regimes have almost disappeared but more importantly

the stable region for low eccentricities exists and has

qualitatively the same shape as before. Finally we con-

sider the case of anisotropic supports with stiffnesses

Kx =

[

1 0
0 9

]

and Ky =

[

5 0
0 45

]

. (7)

Here the critical speeds for the translational and tilt-

ing modes in the x-direction are again Ω1x
= 1 and

Ω2x
≃ 1.81, and are Ω1y

≃ 2.24 and Ω2y
≃ 4.05 for

the y direction. Figure 3(b) shows a ‘brute force’ bifur-

cation diagram for varying values of Ω, constant values
of m = ǫ = 1 × 10−4, and initial conditions where

balls start on opposite sides of the race. This diagram

was computed by running a simulation for each value

of Ω, letting the transients die away and plotting the
maximum values Ām, of the average rotor vibration at

points one unit length from the midspan. For all super-

critical frequencies and at certain intervals between res-

onances the ABB (black curve) effectively eliminates

rotor vibrations whereas for the plain rotor (grey curve)

Ā → ǫ = 1 × 10−4 as Ω → ∞. By contrast, the rotor

fitted with an ABB performs far worse than one without

when passing through the critical speeds. In fact at the

first resonance the vibration level rises off the scale to

a value of about 1× 10−2. In order to avoid these high
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Ω1 Ω2

Ω1x Ω2x Ω1y Ω2y

Figure 3. Panel (a) shows the stability chart for supports with stiff-

nesses given by equation (6) c.f. Fig. 2. Panel (b) is a bifurcation

diagram where the rotor vibration Ām is plotted upon variation of

Ω. The black (grey) curve is for the rotor with (without) an ABB.

vibration levels we envisage using a clamping mecha-

nism in which the balls are fixed until supercritical ro-

tation frequencies are reached [Thearle, 1932].

4 Conclusion

We have presented a simple model for a two-plane

ABB for a rigid rotor on asymmetric supports. Stability

charts obtained by numerical continuation of the Hopf

bifurcation curves together with simulations show that

the considered device can effectively eliminate imbal-

ances arising from both shaft eccentricity and shaft

misalignment. Furthermore, we have for the first time

investigated the effects of support asymmetry and sup-

port anisotropy in the full nonlinear model, we show

that they have little influence on the stable region pro-

vided that the machine is operating in the supercritical

regime with typical values for the eccentricities2 .

We plan to continue the present work by investigat-

ing the symmetry properties of the bifurcations which

give rise to the balanced state. Normal form theory

and the equivariant branching lemma can then be used

to give explicit conditions for the stability of the bi-

2For machine tools and aircraft gas turbines ǫ ≃ 1 × 10
−5

furcating solutions. The transients of the system will

be investigated through the use of pseudospectral tech-

niques [Green et al., 2006b] and experimental work is

also in progress so that we may determine the influence

of ball-race interactions, rotor flexibility and the perfor-

mance of the autobalancer as it accelerates through the

critical speeds.
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