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Abstract  
In this paper, chaotic vibrations of a doubly clamped 
Euler-Bernoulli beam under magnetic excitation is 
being investigated. First by using the Galerkin Method 
the governing ordinary differential equations of 
vibrations of the beam at time space is extracted. Then 
nonlinear dynamics and chaos is studied by using the 
Poincare map. Existence of third order periodic orbit is 
indicated in the system by the means of simulation and 
finally it is concluded that there is chaos in the system 
according to the Li-Yorke theorem. 
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1. Introduction 
Vibrations under electro-magnetic excitation may 
introduce nonlinear phenomena such as sub-harmonic, 
super-harmonic oscillations and chaos. In using 
extended Kalman filtering method, the nonlinear force 
of an electromagnet on a single clamped beam is 
identified. In that work, it is shown that harmonic 
excitation on a clamped elastic beam may result in 
super-harmonic behavior and irregular response.  
Electro-magnetic excitation has many applications in 
active magnetic bearing systems. In using a nonlinear 
model of electromagnetic force which can justify the 
chaotic response of one-dimensional magnetic 
levitation systems, has been proposed. Using an 
experimental setup, Chang and Tung showed the 
chaotic response for magnetic bearing system in high 
frequency range (30 to 40 Hz). Instead of a 
multiplicative form they have identified a superlative 
form for electromagnetic force model. In experimental 
and analytical studies are performed on chaotic 
behavior of active magnetic bearings. Investigation of 
chaos in magnetically levitated doubly clamped beams 
is examined via analytical and experimental methods 
in. 
In this paper, the behavior of a doubly clamped beam 
under magnetic excitation is studied. The results of 

this research are widely used in MEMS, actuation 
mechanisms in small manipulators, guiding precision 
tool (instrument) machines, and also in high frequency 
oscillating switches. 
 
2. Governing equations of the beam under 
magnetic excitation 
The experimented beam is supposed to be an Euler-
Bernoulli one, as it is cleared in Fig. 1, it is excited 
with the electro-magnetic force. 

 
Figure1- schematic of the experimented beam 

In many of nonlinear investigations, the nonlinear 
electromagnetic force has been assumed proportional 
to the coil current squared and inversely proportional 
to the gap squared. This magnetic force model is 
suitable in ideal case, where the electromagnetic 
losses, flux leakage and saturation of iron which may 
exist in real applications, are ignored. The electro-
magnetic force which is used here is modeled as: 
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Where ω  is the exciting frequency of magnetic force, 
I  is the current of oscillating force, 0I  is initial 
current of excitation (bias), u is the lateral vibrations 
of the beam, 0u  denotes the air gap between the 
magnetic head and the mid point of the beam, (.)δ is 

the Dirac delta function: ( )
2
lxδ −  shows that the 

electromagnetic force is exerted in the mid point of the 



beam, and k  is a coefficient with dimension 

of
2

2

Ampere
Nm . 

Since the studied beam is a doubly clamped beam, so 
the boundary conditions are obtained as: 
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The governing equation of a doubly clamped Euler-
Bernoulli beam with linear damping is given by: 

( )
2tt xxxx t
lmu EJu u Fe xδ+ + Γ = −     (3) 

Where Γ the damping coefficient, m is the mass per 
length of the studied beam, E is the elasticity module 
and J is the second order moment of surface around 
the null axis.                                                                                                                          
To obtain the governing ODE of the system by the 
Galerkin projection method, first we should find the 
linear shape functions of equation (3). To this end we 
set the right-hand side of equation (3) to zero 
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  By using the method of separation of variables the 
eigen functions or the shape functions of the above 
equation are obtained as: 
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Where nλ  is the nth eigen value of the system which 
is calculated from the below equation:   
cos( ) cosh( ) 1l lλ λ =  (8) 
Natural frequency of the system is defined as 
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So u  as a function of andx t  is written as 

1
( , ) ( ) ( )

n

i i i
i

u x t A X x T t
=

= ∑  (10) 

To simplify equation (1), the first 5 terms of the Taylor 
expansion formula is used for Galerkin projection of 
Eq. (3). 
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It must be noted that one can use Eq. (1) for Galerkin 
projection directly; however this results in a 
complicated ODE equation which is not useful for 
analytical studies. 
Now substituting Equations (10) and (11) into 
Equation (3) we obtain: 
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The first term of Equation (10) are used to 
approximate the governing equation of the first mode 
vibration of beam.  

1 1( , ) ( ) ( )u x t X x T t=  (13) 
Multiplying both sides of Equation (12) by )(1 xX  
and integrating from 0 to l we obtain 
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  Where for the above first mode of 
vibration, m12ξω=Γ , and ξ is the damping factor. 
Considering the first two terms of Equation (14) we 
have 

1 1 2 2( , ) ( ) ( ) ( ) ( )u x t X x T t X x T t= +  (15) 
Multiplying both sides of Equation (12) by )(1 xX  and 

2 ( )X x  and then integrating from 0 to l we obtain: 
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(16) 
3. Dimensionless Equations 
To apply numerical simulations, it is better that the 
dimensionless governing equations of the system are 
obtained. To this end, the following non-dimension 
parameters are defined:  
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Where µ , X , and τ  are dimensionless transversal 
displacement, coordinate and time respectively; and 

1ω  is the first mode natural frequency of the system. 
µ  can also be written as  
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Where r  is the ratio of the first linear natural 
frequency of the system to the exciting frequency of 
the system; and s  is the ratio of excitation current to 
the bias current. 
Equation (3) will be written as: 
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Getting the first one term of the Eq. (18), and applying 
the Galerkin method, it is obtained that 
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Using the same method equation (16) is written in the 
following non-dimension forms as: 
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We can simplify Eq. (24) and (25) as  
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4. Simulation and Results 
Equations (26) and (27) can be analytically 
investigated by using perturbation methods. This 
would reveal the character of the regular (non-chaotic) 
responses to expect, as a "background" for the cases of 
chaos observed. However here we consider the 
numerical solutions of (26) and (27).  
Using the numerical methods the Equations derived in 
section (3) are solved to plot the time series presenting 
the response of the midpoint of the doubly clamped 
beam under harmonic excitations. Different excitation 
frequencies and different bias currents are examined 
during various simulations. Besides, the Poincare 
maps of the collected data are plotted to investigate the 
existence of regular and irregular responses. 
To plot the Poincare map of the response, the first 
1000 points are considered as the initial transient data 
and hence are omitted. The Poincare map is 
constructed by sampling the time series with 2 / rπ -
period, where r is the non-dimensional excitation 
frequency. 
In these simulations, we set 1s = , and for different 
values of excitation frequencies and bias currents, the 
time series of responses are obtained and for each of 
them, the Poincare map are plotted. The first, the 
second and the third order harmonic responses are 
obtained using Poincare map analysis. Different values 
of bias currents which are considered for numerical 
simulations are: 500, 1700, 1800 and 2000 ( )mA . 
For each of the currents mentioned above, wide ranges 
of excitation frequencies from very small values to 
large values are examined for nonlinear, regular and 
irregular behavior. In what follows some of these time 
series and Poincare maps are presented. 
 It was observed that for the bias current of 500 mA  the 
Poincare section has always a single point. An 
example of these diagrams is shown in Fig. (2). The 
single point on the Poincare map shows that the 
response is periodic and its period is equal to the 
excitation period, i.e. 2 / rπ . 



In Fig. (3), it is observed that for the bias current of 
1700 mA  the Poincare section has two fixed points. 
For the excitation current of 1700 mA  the Poincare 
map has only a single fixed point for the frequencies 
up to19 Hz , two points, i.e. a second order fixed 
point, for the frequencies from 19 Hz  to 20.04 Hz , a 
single point for the frequencies from 20.04 Hz  to 
53 Hz  , two points for the frequencies from 53 Hz  
to 137 Hz  and again a single point for the frequencies 
higher than 137 Hz . 
When the bias current is 1800 mA , the Poincare 
section is observed to be a single point for low 
frequencies up to 18 Hz ; two points for the 
frequencies form 19Hz  to 33 Hz ; a single fixed 
point for the frequencies from 34 Hz  to 52 Hz ; two 
fixed points for the frequencies from 52 Hz  to 
65 Hz ; a single fixed point for the frequencies up to 
136 Hz ; two fixed points for frequencies of 137  to 
138 Hz , and finally a single point for higher 
frequencies. Figure (4) shows the times series and 
Poincare map of one simulation for 0 1800I mA= .  
For 2000 mA bias current, when the excitation 
frequency is lower than 12.9 Hz , the Poincare map 
has a single fixed point. For higher frequencies up 
to13.12 Hz , the single fixed point is substituted by a 
third order one, which results in chaotic response 
regarding the Li-Yorke theorem. After that, up 

to13.5 Hz , a single fixed point is constructed, then a 
second order fixed point is observed for the 
frequencies from 13.5 Hz  of 18.5 Hz . For the 
frequencies from 18.5 Hz  to 40 Hz a single fixed 
point, and for the frequencies of 41  to 42 Hz , a 
second order point are observed.  Finally, a single 
point for the frequencies from 42  to 141 Hz  and two 
points for the frequencies from 142 to 150 Hz are 
constructed on the Poincare sections. 
One of these simulations is presented in Fig. (5). 
 
5. Conclusion 
In this paper nonlinear vibrations of a doubly clamped 
beam under electromagnetic excitation is investigated 
theoretically and the existence of chaos is also studied. 
At first, the governing equations of a doubly clamped 
beam is derived and then the nonlinear term of 
electromagnetic force is inserted in the equations and 
by using the Galerkin method the equations are 
reformed into ordinary differential equations. Using 
numerical methods, the Poincare maps based on the 
vibrations of the midpoint of the beam are obtained. 
The first, the second and the third order sub-harmonic 
responses of the system are observed. According to the 
Li-Yorke Theorem the existence of the third order sub-
harmonic response in the system guarantees the 
existence of aperiodic and hence topological chaos in 
the system. 

 
 

 
Figure 21. Time history of vibrations of the beam and Poincare diagram for 500I mA= , 60f Hz= , 1s =  

                                                           
1 dT is derivation of T 



 

 
Figure 3. Time history of vibrations of the beam and Poincare diagram for 1700I mA= , 135f Hz= , 1s =  

 

 
Figure 4. Time history of vibrations of the beam and Poincare diagram for 1800I mA= , 53f Hz= , 1s =  

 



 
 Figure 5. Time history of vibrations of the beam and Poincare diagram for 2000I mA= , 13.1f Hz=  , 1s =  
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