
PHYSCON 2009, Catania, Italy, September, 1–September, 4 2009

LEARNING SEQUENCES WITH NEURAL GAS FOR ROBOT
MOTION PLANNING

Ignazio Aleo
DIEES

University of Catania
Italy

ignazio.aleo@diees.unict.it

Paolo Arena
DIEES

University of Catania
Italy

paolo.arena@diees.unict.it

Luca Patané
DIEES

University of Catania
Italy

luca.patane@diees.unict.it

Abstract
The aim of this paper is to investigate novel solutions

for motion sequence learning based on an extension of
the Neural Gas with local Principal Component Analy-
sis (NGPCA) algorithm. As an abstract Recurrent Neu-
ral Network (RNN), this model is able to complete a
partially given pattern. Under this point of view it is
possible to generalize the model as a dynamical system
in which for a given actual configuration and a particu-
lar task the desired state variables are retrieved as out-
puts converging to a particular state iteratively. The de-
veloped architecture has been tested in the control of
a redundant manipulator in simple forward and inverse
kinematic problem solving and in motion sequence re-
production.

Key words
Robotics, sequence learning, RNN, PCA, Neural Gas

1 Introduction
The development of efficient low level control al-

gorithms for both kinematic and dynamic problem
solving, even for highly-redundant mechanical struc-
ture, introduces the importance of higher level control
strategies for more complex problem solving and for
Human-Robot Interaction.
The learning of motion sequences is probably one the

first step in this direction. Our idea is to investigate
novel solutions based on an abstract Recurrent Neu-
ral Network (RNN) model named NGPCA [Hoffmann,
2003].
With the local Principal Components it is possible

to represent sensorimotor distributions locally con-
strained to subspaces with fewer dimensions than the
space of the training data. Under this point of view, as
described in [Hoffmann, 2003], PCA is able to model
distributions in which directions with almost zero vari-
ance exist.
The model architecture can be easily divided in a learn-

ing phase, in which the data distribution is approxi-
mated and in a recall phase in which an uncomplete
pattern is presented to the network in order to retrieve
the output (pattern completition). As already discussed
(see [Cruse, 1998], [Steinkuhler, 1998]), similarly to
RNNs, this model is able to cope with multiple solu-
tion tasks providing one of the possible solutions and
it is also possible to choose the role of input and out-
put neurons, after training, simply modifying the re-
call phase. The sequence generation extension of the
model, with the state variables input pattern portion,
gives the motion planning possibility for the control of
the considered serial manipulator [Arena, 2008].

2 MODEL DESCRIPTION
2.1 NG with local PCA
The Neural Gas algorithm is a variant of the soft-

clustering vector quantization with the addiction of an-
nealing. For a given pattern space P ⊆ <d, the algo-
rithm starts choosing m points, in this hyperspace, from
the N code-book vectors. During each step a random
pattern, x, is chosen from the training set. Then each
j-point, cj is updated relating to its rank, rj , function of
the distance from the selected pattern trough the learn-
ing rate ε and the neighborhood range % as follows:

cj(t+ 1) = cj(t) + αj · [x− cj(t)], (1)

where αj is defined by αj = ε · e−rj/%. The lo-
cal PCA extension of the NG considers hyper-ellipsoid
units, with q principal components, instead of simple
points and therefore the ranking of the units cannot de-
pend on an Euclidean distance. One of the possible dis-
tance measure is the normalized Mahalanobis distance,
an elliptical distance that can be computed, for each j
particle, as:

E(x) = ξTWΛ−1WT ξ + 1
σ2 (ξT ξ − ξTWWT ξ)+

+ ln(detΛ) + (d− q)lnσ2,
(2)



where ξ = x− c is the deviation of vector x from the
center unit,W is the eigenvector matrix, Λ is a diagonal
matrix containing the eigenvalues. The second term of
equation (2) is the reconstruction error divided by σ2

that depends on the total residual variance vres, among
all d− q minor dimensions, as in equation (3).

σ2 =
vres
d− q

. (3)

The total residual variance is updated according to

vres(t+ 1) = vres(t)+
+ α · (ξTWΛ−1WT ξ − ξTWWT ξ − vres(t)).

(4)

To modify principal components of existing ellip-
soids, one step of the Robust Recursive Least Square
Algorithm (RRLSA), described in [Ouyang, 2000] is
performed.

{W (t+ 1),Λ(t+ 1)} =
PCA{W (t),Λ(t), ξ(t), α(t)} (5)

Since the orthogonality of W is not preserved after
each step, the Gram-Schmidt orthogonalization method
has been introduced. The algorithm overall block dia-
gram is shown in Figure 1.

Figure 1. Algorithm block diagram for learning phase of the Neural
Gas with local Principal Component Analysis (NGPCA). The NG
block performs center updating for a given training vector, extracted
by Training Selector (TS), the PCA block executes one step of local
principal components algorithm and GSo (Graham-Schmidt ortho-
normalization) is able to normalize eigenvectors.

Relevant parameters used in the model are summa-
rized in table 1.

Table 1. Summary table

m number of particles

N data set dimension

d pattern space dimension

q number of principal components

cj center of particle j

rj ranking of particle j

vres total residual variance

Λj eigenvalues matrix of particle j

Wj eigenvectors matrix of particle j

2.2 Particle volume-normalized distance
In order to reduce the dependence of the error in equa-

tion (2) from the volume of the considered ellipsoid and
to avoid useless points (with weight α almost zero) in
the pattern space it is possible, as in [Hoffmann, 2003],
to modify the distance measure as follows:

Ẽ(x) = (ξTWΛ−1WT ξ+
+ 1

σ2 (ξT ξ − ξTWWT ξ))V 2/d (6)

where V is the volume of the considered ellipsoid unit
and can be computed according to

V = σd−q
√
detΛ. (7)

2.3 Recall
After the learning phase, the data distribution is rep-

resented by m hyper-ellipsoids with center cj (with

j = 1, 2, ...,m), semi-axes lengths
√
λkj (with k =

1, 2, ..., q), wj
k principal component eigenvectors and

a residual variance σ2
j . In order to perform the recall,

a potential function in the constrained subspace Ej(z)
can be computed for each ellipsoid as:

Ej(z) = yTj Λ−1
j yj + 1

σ2
j
(ξTj ξj − yTj yj)+

+ ln(detΛj) + (d− q)lnσ2
j ,

(8)

where ξj is the displacement from the center ξj =
z − cj and yj = WT

j ξj is the representation in the
local coordinate system of the ellipsoid. The input to
the network is given in form of an offset p in the con-
strained space z(η) ⊆ <d as follows:

z(η) = Mη + p, (9)

where M matrix aligns the constrained space to a par-
ticular parameters space while η ∈ <s is a vector of



free parameters. For each unit j, the point of con-
strained space with smallest potential ẑj is determined,
according to equation (8), and then the unit j∗ that has
the minimal potential among all Ej(ẑj) is chosen as
complete pattern.
As shown in [Hoffmann, 2003], the function E(η) is
convex and it is possible to determine analytically the
only minimum η̂j computing:

η̂j = Aj(p− cj), (10)

with

Aj = −(MTDjM)−1MTDj ,
Dj = WjΛ−1

j WT
j + 1

σ2
j
(I−WjWT

j ).

}
(11)

3 NGPCA for Sequences generation
One of the possible extensions of this vector recon-

struction strategy is to introduce the actual state xi and
next state xi+1 of the considered system as part of the
input vector

pi = (xi,xi+1), i = 1, 2, ..., N − 1. (12)

In this way it is possible to learn not only a static com-
plex law but even a particular sequence. Under this
point of view it is possible to make both short and long
term prediction and then analyze model prediction with
real sensor information for updating the internal model.
The so generalized model, shown in Figure 2, has been
applied to control a custom built seven degrees of free-
dom redundant manipulator [Arena, 2008] not only in
forward and inverse kinematic problem solving (see
[Hoffmann, 2003]) but also in operating space motion
planning.
The introduced Pattern Constructor block (PC) pro-
cesses inputs for the abstract network (NGPCA) in or-
der to determine the constrained space for the current
iteration, reading the joint variables θ, and therefore
leading the system toward the given reference Pd (e.g.
solving forward kinematics), as in

xi = f(θi,Pd). (13)

The miniARM block is the serial manipulator itself
and has been implemented both in simulation and in
real hardware setup. It takes an input vector refer-
ence and gives a feedback vector (e.g. it can be imple-
mented in the operating space solving the inverse kine-
matics and reading joint angular position) (see [Cruse,
1993],[Arena, 2007]).

Figure 2. Algorithm block diagram for sequence learning with
Neural Gas with local Principal Component Analysis (NGPCA). The
Pattern Constructor block (PC) performs control modifying the input
pattern with the offset Pd. The miniARM block is the serial redun-
dant manipulator (controlled in the operating space).

The same overall model architecture could also be
used to determine an iterative converging recall algo-
rithm, not discussed in this paper, modifying the one
described in the previous section, in order to control
the system with constrains toward a desired trajectory
in the free-parameters subspace.

4 Experimental setup

As introduced, the algorithm has been tested with a
real manipulator, the MiniARM [Arena, 2008]. The
MiniARM, shown in Figure 3, is a serial manipulator
with rotational joints, completely custom built, devel-
oped in order to analyze and compare algorithm per-
formances with low implementation effort. The overall
control is made up of a high level sequence control in
the computer and a low level hardware layer control
(custom built) with a 32 bit microcontroller unit. Ar-
chitecture functional diagram is shown in Figure 4.

Figure 3. Picture of MiniARM first prototype realized in our labo-
ratories. Experimental setup for square sequence learning in a plane.



Figure 4. Functional diagram of the hardware layer (main host
computer, low level control board and actuators/sensors) of the im-
plemented control algorithm.

4.1 Training set
The training set have been acquired from the real robot

reading all the encoder positions through the direct
kinematic of the manipulator. Each data set is made
up of N=1000 three-dimensional points acquired every
0.08s inside the operating space during a user guided
real-time trajectory following.

xi , (xi, yi, zi) i = 1, 2, ..., N − 1,
pi = (xi, yi, zi, xi+1, yi+1, zi+1).

(14)

Though desired trajectories are planar and repetitive,
the acquisition method is very noisy and three dimen-
sional by definition, as shown in Figure 5.

Figure 5. Three dimensional plot of an example data set acquired
with N = 1000 (up-left), XY plane plot (up-right), YZ (down-
left), XZ (down-right).

Learning patterns have been built up using two con-
secutive points from acquired data set.

Figure 6. Examples of sequences learned with the NGPCA.

5 Results
Performance of the algorithm have been tested under

different operating conditions. All presented results
have been obtained with the experimental setup shown
in Figure 3.

5.1 Normal operations
As described in the following relationship, the algo-

rithm provides just the next point of the sequence in
the operating space given the actual point as part of the
reconstructed pattern ẑ∗.

ẑ∗ = Mη̂j∗ + p, (15)

where the offset vector p is able to define the con-
strained subspace as in equation (16) iteration after it-
eration.

pi = (xi, yi, zi, 0, 0, 0) i = 1, 2, ..., N. (16)

The M matrix aligns free and constrained subspaces in
separate regions of the whole space.

M =
[

0
I

]
, 0 =

0 0 0
0 0 0
0 0 0

 , I =

1 0 0
0 1 0
0 0 1

 . (17)

The joint space trajectories are generated solving it-
eratively the inverse kinematic problem (see [Cruse,
1993],[Arena, 2007]). Robot reproduced trajectories
are shown in Figure 6. Three different trajectories have
been reproduced in order to analyze the generaliza-
tion capabilities. All these have been generated with
human-guided points acquisition method.



Figure 7. Examples of NGPCA sequences reproduction in presence
of simulated feedback errors: e = 0.05 (5% of random component
in θ) (on the top), e = 0.1 of random component (down-left) and
e = 0.15 (down-right).

5.2 Numeric robustness
One of the most important features of the algorithm

is that both learning phase and recall phase show a
very high numeric robustness. As depicted in Figure 5,
learning data set defines a really noisy trajectory. The
same trajectories have been reproduced adding noise in
the feedback variable θ as in equation (18).

θ = θ̂(1 + e(rand− 0.5)), (18)

where θ̂ is the measured feedback variable vector while
rand ⊆ [0, 1] with uniform probability density distri-
bution and e ⊆ [0, 1] is the maximum error amplitude.
The circle trajectory has been chosen in order to test
numeric robustness of sequence reproduction as shown
in Figure 7 with e ∈ {0.05, 0.1, 0.15}.

5.3 Performance outside learned space
The performance outside the operating space have

been tested using multiple distances from the center
of the trajectory and measuring the number of steps
needed to go through the sequence (i.e. the Euclidean
distance Ei under a chosen threshold Eth = 0.1 cm as
in inequality 19). Though particular values strongly de-
pend on the shape of the path and on the learning phase,
for a given trajectory and a defined training phase val-
ues can be compared through all different distances. In
order to normalize these distances with the effective di-
mension of the path, an adimensional Distance over Di-
mension Ratio (DDR) is defined as in equation (20).

Ei < Eth, (19)

Figure 8. Trajectories reproduced from points far away from the
trained operating space. DDR=7 on the top and DDR=10 on the
bottom.

Table 2. Algorithm performance, outside operating space

DDR 2 10 100 1000

n 13 18 24 36

n10 16 20 24 36

DDR =
d

md
, (20)

where d is the distance from the center of the trajectory
and md is the maximum dimension of it. Examples
of reproduced trajectories starting from a point outside
from the learned space are shown in Figure 8. Table
2 and Figure 9 summarize the algorithm performance:
n is the number of steps noiseless and n10 is the same
quantity when an additional 10% of random component
is added in feedback variable θ.

Figure 9. Number of steps needed to go into the sequence with es-
pect to the DDR on the left (dots are real data while line is a loga-
rithmic interpolation), same plot with DDR on logarithmic scale (ab-
scissa) on the right.



5.4 Reversed operations
As in common RNNs, in the NGPCA the pattern re-

construction is possible careless on which part of the
pattern is lacking. However, a distinct feature if this ar-
chitecture with respect to the other RNNs is that the
choice of which part of the pattern has to be recon-
structed does not affect the learning phase. Therefore
it is possible to use the same learning not only for one
way sequences reproduction but also for reversed se-
quences. The same performance are so obtained using
the same learned architecture and employing the fol-
lowing pattern for reverse reconstruction purposes.

pi = (0, 0, 0, xi, yi, zi),

i = 1, 2, ..., N, M =
[

I
0

]
.

(21)

6 Conclusions
The Neural Gas algorithm with local Principal Com-

ponent Analysis implementation has been tested and
extended for the control of motion sequences for a re-
dundant serial manipulator. Algorithm robustness, in
terms of noise and performance outside the learned
space, has been tested. Though the training phase
needs a complete training set and a computational ef-
fort, the recalling phase is very fast and possible to im-
plement also in a common microcontroller-based plat-
form. The one-to-many mappings, the prediction capa-
bility and the inputs/outputs role independence in the
training phase shows the possibility of generalization
over a wide range of control applications.

Acknowledgements
The authors acknowledge the support of the European

Commission under the project ICT 216227 - SPARK
II Spatial-temporal patterns for action-oriented percep-
tion in roving robots.

References
Arena, P., Cruse, H., Fortuna, L. and Patané, L. (2007)

An Obstacle avoidance method for a redundant ma-
nipulator controlled through a recurrent neural net-
work. In Proc. of Microtechnologies for the New Mil-
lennium (SPIE 07) Gran Canaria (SPAIN), May.

Arena, P. (2008) EU Project SPARK II, website online
at www.spark2.diees.unict.it/MiniArm.html.

Cruse, H. and Steinkuhler, U. (1993) Solution of the
direct and inverse kinematics problems by a com-
mon algorithm based on the mean of multiple com-
putations. Biol. Cybernetics, vol. 69 (2), pp. 345-351,
1993.

Cruse, H., Steinkuhler, U. and Burkamp, Ch. (1998)
MMC - A recurrent neural network which can be
used as manipulable body model. From animals to
animats, vol. 5, R. Pfeifer, B. Blumberg, J.-A. Meyer,
S.W. Wilson (eds.) MIT Press, pp. 381-389.

Hoffmann, H., Möller, R. (2003) Unsupervised learn-
ing of a kinematic arm model. Artificial Neural Net-
works and Neural Information Processing, vol. 2714,
(ICANN/ICONIP), LNCS, Kaynak O, Alpaydin E,
Oja E, Xu L,Springer, Berlin, pp. 463-470.

Ouyang, S., Bao, Z., Liao, G.S. (2000) Robust re-
cursive least squares learning algorithm for princi-
pal component analysis. IEEE Transactions on Neu-
ral Networks, vol. 11(1), pp. 215-221.

Steinkuhler, U., Cruse, H. (1998) A holistic model for
an internal representation to control the movement
of a manipulator with redundant degrees of freedom.
Biol. Cybernetics, vol. 79, pp. 457-466.

Tipping, M. E., Bishop, C. M. (1999) Mixtures of prob-
abilistic principal component analyzers. Neural Com-
putation, vol. 11, pp: 443-482, 1999.


