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1. Introduction. In last decades, a large attention has been given to problems of global

organization, stability and evolution of complex networks such as neural and gene networks,

economical circuits, Internet etc. (see [1]). In this paper we consider dynamical network models

having the form

ui(t + 1) = σ(
N∑

j=1

Kijūj(t) + hi − ξi(t)), (1.1)

where t = 0, 1, 2, ...,, ξt
i are random real valued functions of discrete time t, the ūi denote time

averages with the weight φ: ūi =
∑

τ=0,1,... ui(t − τ)φ(τ), where φ is a decreasing function (a

natural choice is φ = exp(−γt)). Initial conditions are ui(0) ≡ si, The function σ is an increasing

function satisfying limz→−∞ σ(z) = 0, limz→∞ σ(z) = 1 (for example, σ(z) = σm(z) = zm

1+zm )

for z > 0 and 0 for z ≤ 0, m > 0). This model and the corresponding continuous time analogoes

are paradigmactical for neural and gene networks [7, 6, 9, 8].

The goal of this paper is to describe a new class of networks where we can perform an

effective control of network dynamics. This dynamics can be very complex, even chaotic. Also

we describe effects connecting with long memory in these networks which lead to a global

network cruch.

Let us consider (1.1) with special Kij. Consider a directed weighted graph (V,E) associated

with (1.1), with N vertices, where the edge (i, j) ∈ E only and only if Kij 6= 0. Denote by Vi

the connectivity of the i-th node. Suppose that there are n << N special ”key” nodes (leading

centers) ( they are indexed by i = 1, 2, ..., n) and m = N − n ”usual” nodes. We assume that

i-th usual node can be connected only with the key nodes and the key nodes can be connected

only with usual nodes. For n = 1 one has a model of a supercentralized system (an Empire, with

a capital and many regions, a central bank and many small banks, or the world financial center

like the USA and other countries that depend on this center’s financial activity, or the financial

market and the banks working on it). Besides such a network topology, we also consider more

general situations where usual modes can interact.

Main results can be outlined as follows. When noises are absent (ξi = 0), one has



A Circuits (1.1) can simulate any dynamical systems. Namely, if q(t + 1) = F (q), q ∈ D a

discrete time dynamical system and ε > 0 then there is a choice of N > n and Kij such that

the dynamics of the key nodes is defined by the map q(t + 1) = F (q) + εG(q), q ∈ D, where

|G| < 1. Here D is a open ball in Rn;

The results on dynamical complexity were known [11], however, in contrast to [11], for our

network class the new control method admits a simple physical interpretation: we perform a

control by adjusting connections between the central node and usual ones.

B Using the result A and results of [4], one can show that (1.1) simulate any Turing

machines. An interesting effect is possible when the network with a larger noise could be more

effective in computations than the corresponding network with smaller noise level.

Noised networks can be reduced, for large N , to networks without noise, but with a new

sigmoidal function.

For networks with a memory and a more nontrivial interaction between usual nodes one

has the following. Stability depends on some main parameters, in particular, the averaged

connectivity W of interactions between usual nodes and γ, the memory fading rate. We show

that such a network without noise can have a trivial dynamic for large γ when all trajectories

converge to a trivial equilibria and a nontrivial bistable dynamics if γ is small enough. If a

noise exists, in the limit γ → 0 dynamically stable steady states can become unstable as a

result of fluctuation onset.

2. Complicated behavior. Suppose the memory and the noises are absent, i.e., ξi = 0,

and φ(τ) = 1 for τ = 0 and φ = 0 for τ > 0. Then ūi = ui. First we show that dynamics of

(1.1) is completely captured by states ql(t) = ul(t), l = 1, 2, ..., n of leading centers. Suppose

ξi = 0. Under our assumptions on the structure of (1.1) one has

ql(t + 1) = σ(
N∑

j=n+1

Kljuj(t)) (2.1)

(we set h1 = h2 = ... = hn = 0) and

uj(t + 1) = σ(
n∑

l=1

Kjlql(t) + hj). (2.2)

and thus ql(t + 2) = G(q), where Gl = σ(
∑N

j=n+1 Kljσ(
∑n

l=1 Kjlql(t) + hj).

Proposition 2.1. Let us consider a dynamical system with discrete time defined on a closed

ball Bn
R of the radius R > 0 in Rn: q(t + 2) = F (q(t)), q = (q1, q2, ..., qn) ∈ Bn

R, where F is a



C1-map from Bn
R to an open subset of Bn

R. Suppose that σ ∈ C∞ is a stictly increasing. Then

for each ε > 0 there are such coefficients alj, bjl and thresholds hj that |G− F |C1(Bn
R) < ε.

Sketch of proof: to prove this assertion, we can use approximation theorems of the mul-

tilayered network theory [2]. Since σ is a strictly increasing function, one can define a C1

-smooth vector field Q by Ql(q) = σ−1(Fl(q)). On Bn
R, this field can be approximated in C1

-norm, within arbitrary precision, by a field Sl(q, a, b, h) =
∑N

j=n+1 aljσ(
∑n

l=1 bjlql(t) − hj), for

appropriate a, b, h. The proof is completed.

This result shows that any (up to topological equivalency) structurally stable dynamics can

be obtained by centralized networks. In particular, we conclude that centralized networks can

generate complicated chaotic attractors.

Proposition 2.1 entails such a corollary.

Proposition 2.2. Centralized networks (1.1) can simulate any Turing machines.

Recall that the Turing machine is an abstract model of computer. The Church thesis asserts

that all possible computations can be done by the Turing machines. To prove this assertion,

one can use results of [4]. In this paper it is established, in particular, that if a class of networks

is capable to simulate all piecewise linear maps q → F = L(q), then, inside this class, we can

simulate any prescribed Turing machine. It is obvious (due to Prop.2.1) that our class enjoys

this property. Moreover, even it suffices to approximate all piecewise linear maps in dimension

2, q ∈ R2 [4].

So, circuits (1.1) can have complicated attractors ( for n ≥ 1) and also produce any program

of development (for n ≥ 2). To prescribe a complex behavioural program to a centralized

system, we need at least two ”controlling” centers, n = 2.

To create a chaos, it is sufficient to have only a single center, n = 1. In fact, it well known

that maps from [0, 1] to [0, 1] can have chaotic attractors. Similar results can be obtained in

time continuous case. Then, to create a chaos, our system should contain at least three centers

and two centers to induce periodocal oscillations.

Let us consider the noisy case. Suppose ξi are mutually independent identically distributed

noises without time correlation: ξi are random numbers drawn by a fixed distrubution, Prob(ξ <

x) = F (x), where F (x) is a smooth function. We can apply the Central Limit Theorem that

gives us (2.2) with a new σ(z) = σ̄(z), where σ̄ is an averaged sigmoidal function: σ̄ =
∫∞
−∞ σ(z + ξ)ρ(ξ)dξ, ρ(x) = F ′(x) is distribution density of ξi.



3. Networks with memory and more complex topology.

We consider the simplest case of a single center, n = 1, but, on the other hand, let us assume

that φ = exp(−γτ). To make the problem more analytically tractable, we suppose σ(z) = σm

and hi = 0. Let us consider now such a system

q(t + 1) = q(t)− βq(t) + a
N∑

i=1

ui, (3.1)

ui(t + 1) = σm(
∑

j

Kijūj(t) + N−1βq(t)). (3.2)

This system admits, for example, the following economical interpretation. A center (state)

concentrates resources q. A part βq of these resources are distributed for many enterprises ui,

on the other hand, these enterprises return to the center the quantity a
∑N

i=1 ui (as a tax, for

exmaple). Here β ∈ (0, 1), a = O(1). We seek for equilibrium states of this network for small

γ (a long memory dynamics). Let us denote Vi =
∑

j Kij ( the connectivity of the i-th node).

Below we consider two main cases.

ER) Erdos -Renyi topology [5], where almost all Vi have the same order. Here we set, for

simplicity, that Vi = W .

SF) Scale - free case [1], where there are a few strongly connected nodes and many weakly

connected nodes.

We obtain the following results as N → ∞ in the case ER. I) If W,β are small enough,

γ = O(1) there exists a unique steady state q = 0 attracting globally all the dynamics;

II) For small γ a there are possible three steady states: two stable, in particular, a trivial

state q = 0, a nontrivial state qeq 6= 0 (that corresponds to global network activity) and a

unstable state.

Stability of the nontrivial steady state decreases as γ → 0: the corresponding multiplicators

λ have the form λ(γ) ≈ exp(−γ) + g(W, γ, a), where g(W, γ, a) = O(γm). If λ > 1 one has

instability; if λ < 1 our steady state is stable. If m < 1 (the sigmoid is not sharp) this steady

state losts stability dynamically. If m > 1, one can see that λ → 1 as γ → 0 and λ < 1 if γ is

small enough, in this case we should take into account fluctuations. In this case glaoblly active

state of the network can be stable longtime but finally it falls. There exists an optimal value of

γ which gives a maximal stability for the globally active steady state of the network. One can

show that the stability of this steady state is an increasing function of the connectivity W .



For the case SF the steady state existence can be shown in asymptotical limit γ → 0. To find

an exact estimate of the stability is now a more difficult task, however, we can apply standard

varitional methods to estimate multiplicators. Rough estimates by test functions show that,

the instability onset starts with strongly connected nodes (therefore, to support system at the

critical moment we should support system forming enterprises). Notice that physical network

approaches to economics have been developed last decades (see [1, 3, 10]), here we concentrate

on memory effects.

Memory may have the meaning of credits, therefore, we come to the following conclusions:

too short money does not allow to activate weakly connected economical networks; too long

money can destroy these network; to increase stability we should increase connectivity; at the

crash moment it is better to support billioners than simple men.

This phenomenon has clear economical meaning: 1. Absence of credits does not allow the

economy to develop - when money is too short, companies have to repay credits before they

earn profits. So companies which decided to take loans can go bankrupt, while companies that

do not use borrowed money (in order to avoid the risk of insolvency) cannot develop. The same

is true for situations with high interest rate; 2. When credits are given at attractive terms (long

repayment period and low interest rate), it helps to speed up the economical development, but

more credits were taken, heavier the financial burden is. Companies have the tendency to take

as many credits as possible, and this burden crushes them even before the date of payment

comes. Therefore, credit terms should not be too attractive in order to prevent a long financial

memory. It is important to mention that the same is true for banks working on financial market

(in this case memory means credits given and investments made). Accumulating this memory

leads to the problem of non-sufficient assets. Banks try to hidden this memory by making

financial operations beyond the balance sheet, but it helps only in short-run. In long-run it

makes the situation worse: as these operations are beyond the balance, they are also beyond

audit and beyond the legal control. Banks have the impression that they may perform as many

operations as they wish. But accumulating bad memory leads to a crash. For example, a huge

volume of such operations destroyed the Lehman Brothers bank.
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