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Abstract
This paper discusses a design method for improve-

ment in the transient response of a multirate control
system, in which the sampling interval of the plant out-
put is an integer multiple of the hold interval of the
control input. A design method for a multirate con-
trol system has been proposed such that the intersam-
ple response is improved independent of the sample re-
sponse. In the conventional method, a control system is
designed to eliminate the steady-state intersample rip-
ples. However, in this study, the transient response is
also improved as well as the steady-state response.

Key words
multirate system, transient response, steady-state re-

sponse, intersample response, sample response

1 Introduction
This paper discusses a sampled-data control system,

in which a continuous-time plant is controlled using
a discrete-time controller, and it is assumed that the
dynamic characteristics in continuous time cannot be
obtained, but those in discrete time are obtained. Fur-
ther, the sampling interval of the plant output is an in-
teger multiple of the hold interval of the control input,
and such systems are referred to as multirate systems
[Åström and Wittenmark, 1997; Araki and Hagiwara,
1986; Polyakov, 2006]. Hence, a multirate system is
controlled using the discrete-time plant output instead
of the continuous-time one.
An extension method for a multirate control system

has been proposed [Sato, 2008]. In this method, the
sample response in an existing control system is main-
tained, and a multirate control law is extended. As a
result, the intersample response can be improved inde-
pendent of the sample response. However, in the con-
ventional method, design parameters of the extension
method are selected such that only the steady-state rip-
ples are eliminated. Hence, in this study, design param-

eters are selected to improve not only the steady-state
response also the transient response.
In this study, z−1

1 denotes the one-step backward shift
operator, z−1

1 y[k] = y[k − 1] and z−1
j = z−j

1 . A poly-
nomial is described as A[z−1

l ], and a polynomial vector
and a polynomial matrix are described as A[z−1

l ].

2 Multirate Control System
Consider a single-input single-output (SISO) single-

rate control system given as:

As[z−1
1 ]y[k] = Bs[z−1

1 ]T u[k − 1] (1)

where y[k] and u[k] are the plant output and the control
input, respectively. In the case that the plant output
can be sampled every step, this system is referred to
a fast-rate single-rate (FRSR) system. However, it is
assumed that the control input can be updated every
step, but the sampling interval of the plant output is an
integer multiple of the hold interval of the control input.
Hence, the plant output is only measured every l steps.
The measurable output signals and the unmeasurable
output signals are summarized as follows.

y[k]︸︷︷︸
measured

, y[k + 1], y[k + 2], · · · , y[k + l − 1]︸ ︷︷ ︸
unmeasured

,

y[k + l]︸ ︷︷ ︸
measured

, y[k + l + 1], · · · , y[k + 2l − 1]︸ ︷︷ ︸
unmeasured

,

y[k + 2l]︸ ︷︷ ︸
measured

, y[k + 2l + 1], · · · , y[k + 3l − 1]︸ ︷︷ ︸
unmeasured

,

y[k + 3l]︸ ︷︷ ︸
measured

, · · ·

Because this system is a multirate system, a FRSR con-
trol system cannot be obtained. In this study, to design
this multirate system as a single-rate system, this SISO



FRSR model is transformed into a multi-input single-
output (MISO) slow-rate single-rate (SRSR) system us-
ing the lifting. [Chen and Francis, 1995; Lu et al.,
1990; Ishitobi et al., 2002]. This paper discusses a de-
sign method for a MISO SRSR system given as:

A[z−1
l ]y[k] = B[z−1

l ]T u[k − l] (2)

A[z−1
l ] = 1 + a1z

−1
l + · · · + anz−n

l

B[z−1
l ] =

[
B1[z−1

l ] B2[z−1
l ] · · · Bl[z−1

l ]
]T

Bj [z−1
l ] = bj,0 + bj,1z

−1
l + · · · + bj,nz−n

l

u[k] = [u[k] u[k + 1] · · · u[k + l − 1]]T

j = 1, · · · , l

It is assumed that (2) is stably controlled using a mul-
tirate control law given as:

Y [z−1
l ]u[k] = K[z−1

l ]w[k] − X[z−1
l ]y[k] (3)

Y [z−1
l ] = diag{Y1[z−1

l ], · · · , Yl[z−1
l ]}

K[z−1
l ] =

[
K1[z−1

l ] · · · Kl[z−1
l ]

]T

X[z−1
l ] =

[
X1[z−1

l ] · · · Xl[z−1
l ]

]T

where Y [z−1
l ] is non-singular.

Using the multirate control law, the closed-loop sys-
tem is calculated as:

y[k] =
z−1

l YB[z−1
l ]T K[z−1

l ]
T [z−1

l ]
w[k] (4)

T [z−1
l ] = Yp[z−1

l ]A[z−1
l ] + z−1

l YB[z−1
l ]T X[z−1

l ]

Yp[z−1
l ] =

l∏
i=1

Yi[z−1
l ]

YB[z−1
l ] =

[
YB1[z−1

l ] · · · YBl[z−1
l ]

]T

YBi[z−1
l ] = Bi[z−1

l ]
l,j �=i∏
j=1

Yj [z−1
l ]

The derivation of (4) is shown in [Sato, 2008].

In the previous work [Sato, 2008], in order to elim-
inate the steady-state intersample ripples independent
of the closed-loop system (4), the multirate control law

(3) is extended as follows.

Ye[z−1
l ]u[k] = K[z−1

l ]w[k] − Xe[z−1
l ]y[k] (5)

Ye[z−1
l ] = Y [z−1

l ] − z−1
l Uu[z−1

l ]B[z−1
l ]T

Xe[z−1
l ] = X[z−1

l ] + Uy[z−1
l ]A[z−1

l ]

Uu[z−1
l ] =

[
Uu,1[z−1

l ] · · · Uu,l[z−1
l ]

]T

Uy[z−1
l ] =

[
Uy,1[z−1

l ] · · · Uy,l[z−1
l ]

]T

Xe[z−1
l ] =

⎡
⎢⎣

X1[z−1
l ] + Uy,1[z−1

l ]A[z−1
l ]

...
Xl[z−1

l ] + Uy,l[z−1
l ]A[z−1

l ]

⎤
⎥⎦

Ye[z−1
l ] =

⎡
⎢⎣

Ye1,1 [z
−1
l ] · · · Ye1,l

[z−1
l ]

...
...

Yel,1 [z
−1
l ] · · · Yel,l

[z−1
l ]

⎤
⎥⎦

Yei,j [z
−1
l ] ={

Yi[z−1
l ] − z−1

l Uu,i[z−1
l ]Bi[z−1

l ] (i = j)
−z−1

l Uu,i[z−1
l ]Bj [z−1

l ] (i �= j)

Ye[z−1
l ] must be non-singular.

In the case that the extended multirate control law (5)
is employed instead of the original multirate control
law (3), the closed-loop system is extended as follows.

y[k] =
z−1

l YB[z−1
l ]T K[z−1

l ]
Te[z−1

l ]
w[k] (6)

Te[z−1
l ] = T [z−1

l ] + T̄e[z−1
l ] (7)

T̄e[z−1
l ] = z−1

l YB[z−1
l ]T (Uy [z−1

l ]−Uu[z−1
l ])A[z−1

l ]
(8)

where Uu[z−1
l ] and Uy [z−1

l ] are set as follows.

Uu,i[z−1
l ] = Ui[z−1

l ]Bi+1[z−1
l ]Yi[z−1

l ] (i �= l)

Uu,l[z−1
l ] = Ul[z−1

l ]B1[z−1
l ]Yl[z−1

l ]

Uy,i[z−1
l ] = Ui−1[z−1

l ]Bi−1[z−1
l ]Yi[z−1

l ] (i �= 1)

Uy,1[z−1
l ] = Ul[z−1

l ]Bl[z−1
l ]Y1[z−1

l ]

where Ui[z−1
l ] (i = 1, · · · , l) are design polynomials,

and then, Te[z−1
l ] = 0. Therefore, the new closed-

loop system is equal to the original one, and U i[z−1
l ]

can be selected independent of the original closed-loop
system (4). In the previous work, new design polyno-
mials Ui[z−1

l ] (i = 1, · · · , l) are designed such that the
steady-state gains from the reference input to the con-
trol inputs are to be equivalent. As a result, the plant
output converges to the step-wise reference input with-
out intersample ripples in steady state.
In this study, it is shown that the transient response

can be also improved independent of the sample re-
sponse. In the conventional method, the design poly-
nomials are set to scalars to have the steady-state gains
be equivalent. However, in this study, to improve both



the steady-state and the transient responses these de-
sign parameters are set as polynomials, and its effec-
tiveness is demonstrated in the next section.

3 Numerical Example
Consider a continuous-time model given as:

G(s) =
0.7

(1.9s + 1)2
(9)

This is a model of a hot-air tunnel, and its simplified
figure is illustrated as Fig. 1, in which the air flow in-
side the tunnel is controlled by a ventilator [Matušů and
Prokop, 2008]. The plant output is the airflow speed
measured by a vane flowmeter, and the control input is
the ventilator voltage.

vane flowmeterventilator

tunnel covering

Figure 1. Model of a hot-air tunnel

It is assumed that the dynamic characteristics in contin-
uous time are not obtained, but the discrete-time model
can be obtained. Further, the plant output is sampled at
intervals of 0.5[s], and the control input can be updated
at intervals of 0.5/2[s]. In this case, a control law is
designed using a two-input single-output SRSR system
given as:

(1 − 1.2z−1
2 + 0.35z−2

2 )y[k] =[
0.048 + 0.010z−1

2 0.020 + 0.038z−1
2

]
u[k − 2]

(10)

A multirate control law is designed such that the
closed-loop poles are set to 0.1, 0.2 and 0.4, and its
control result using this control law is shown in Fig. 2
and Fig. 3. These figures show that the sampled out-
put can converge to the unit step reference input, but
the control input oscillates and does not converge to a
constant, and the intersample output oscillates.
However, the sample response is ideal, and it should

not be changed because the closed-loop poles of the
discrete-time control system are assigned to the desired
values, although the intersample output oscillates. The
sample response is desired and, it is assumed not to be
changed because the closed-loop poles of the discrete-
time control system are assigned to the desired val-
ues, although the intersample output oscillates. There-
fore, the objective of the extension (5) is to improve
intersample response without changing the sample re-
sponse. First, the new design parameters are designed

to eliminate the steady-state ripples, and next, those pa-
rameters are designed such that the transient response
is also improved. Using U2[z−1

2 ] = 0, in the design
method for improvement in the steady-state intersam-
ple response [Sato, 2008], the steady-state ripples can
be eliminated if the following equation is satisfied.

U1[1] = Ū1

Ū1 = 6.1 × 102

In the conventional method [Sato, 2008], U 1[z−1
2 ] =

Ū1 is employed, and hence, only the steady-state rip-
ples are eliminated. Its control result is shown in Fig. 4
and Fig. 5. From this result, the plant output converges
to the reference input without intersample ripples, but
the transient response is deteriorated compared with
that of the original multirate control system shown as
Fig. 4.
Next, to improve both the steady-state and the tran-

sient responses, the design parameter U1[z−1
2 ] is de-

signed as:

U1[z−1
2 ] =

Utr[z−1
2 ]

Utr[1]
Ū1

where Utr[z−1
2 ] is set to Utr1[z−1

2 ] and Utr2[z−1
2 ], re-

spectively, and simulations are conducted.

Utr1[z−1
2 ] = 1 + 0.9z−1

2 (11)

Utr2[z−1
2 ] = 1 + 0.9z−1

2 + 0.7z−2
2 + 0.6z−3

2

+ 0.5z−4
2 + 0.4z−5

2 + 0.3z−6
2 + 0.2z−7

2 + 0.1z−8
2

(12)

The simulation result using Utr1[z−1
2 ] (11) is shown in

Fig. 6 and Fig. 7. The transient response is slightly
improved, but it is not sufficiently improved. Hence,
Utr2[z−1

2 ] (12) is employed instead of (11), and the
plant is controlled. Fig. 8 shows that both the over-
shoot and the under-shoot are reduced between the
sampled outputs, and the steady-state response is not
deteriorated, although the plant output slightly vi-
brates. The control input converges to the constant
value (Fig. 9). For comparison, all the control results
are shown in Fig. 10 and Fig. 11, and it can be seen that
the sample response can be maintained.

4 Conclusion
This paper discussed a design method for a multirate

control system, in which the sampling interval of the
plant output is longer than the hold interval of the con-
trol input. In this study, a design method [Sato, 2008]
for a multirate control system was applied to a hot-air
tunnel [Matušů and Prokop, 2008], and it is shown that
the extension method of a multirate control system can
improve not only the steady-state response but also the
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Figure 2. Output result (original control system)
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Figure 3. Input result (original control system)

transient response. However, an optimal design method
for design parameters should be made clear, although
its effectiveness was demonstrated through numerical
examples.

References
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Figure 4. Output result (extension for steady-state response)
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Figure 6. Output result (extension for transient response 1)
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Figure 7. Input result (extension for transient response 1)
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Figure 8. Output result (extension for transient response 2)
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Figure 9. Input result (extension for transient response 2)
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Figure 10. All output results

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

time[s]

co
nt

ro
l i

np
ut

Input results

sampled output
U

n
=0

U
n
: constant

U
n
: polynomial Tr1

Figure 11. All input results


