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Abstract
The mathematical models describing the dynamics of

elastic elements of wing structures and representing the
initial-boundary value problems for systems of partial
differential equations are proposed. The dynamics and
stability of elastic elements of wings, flown around by
a gas or liquid stream in a model of an incompressible
medium, are investigated. To study the dynamics of elas-
tic elements and a gas-liquid medium, both linear and
nonlinear models of the mechanics of a solid deformable
body and linear models of the mechanics of liquid and
gas are used. On the basis of the constructed function-
als for partial differential equations, the sufficient sta-
bility conditions are obtained in analytical form. The
conditions impose restrictions on the parameters of me-
chanical systems. The obtained stability conditions are
necessary for solving the problems of controlling the pa-
rameters of the aeroelastic system. On the basis of the
Galerkin method, a numerical study of the dynamics of
elastic elements was carried out, the reliability of which
is confirmed by the obtained analytical results.
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1 Introduction
In the design and operation of constructions, instru-

ments, devices, installations for various purposes inter-
acting with a liquid flow, an important problem is to en-
sure the reliability of their operation and increase their
service life. The similar problems are inherent in many
branches of technology. In particular, the problems of

this kind arise in mechanical engineering, aircraft engi-
neering, instrumentation, etc. The study of the stabil-
ity of deformable elements is of great importance in cal-
culating structures interacting with a liquid or gas flow,
since the effect of a flow can lead to its loss.

To ensure the reliability of operation and the accuracy
of the functioning of aeroelastic structures, it is neces-
sary to control their dynamics. In this regard, it is neces-
sary to determine the boundaries of the regions of the pa-
rameters of mechanical systems that ensure the dynamic
stability of structures. When the parameters of the sys-
tem go beyond the boundaries of the stable operation of
the structure, it is necessary to correct the system, which
involves solving the problem of controlling the parame-
ters.

The study of the stability of elastic bodies interacting
with a gas or liquid flow is devoted to many theoretical
and experimental studies.

However, in recent years, most of the works have been
devoted to the study of the stability of pipeline systems
and cylindrical shells interacting with a liquid or gas
flow. Among the latter, we note the works [Abdelbaki
et al., 2019; Blinkov et al., 2018; Butt et al., 2021;
Chehreghani et al., 2021; Kheiri and Paidoussis, 2015;
Kontzialis et al., 2017; Moditis et al., 2016; Mogile-
vich et al., 2017; Mogilevich et al., 2018; Mogilevich
and Ivanov, 2020; Moshkelgosha et al., 2017] and many
others. Among the works of the authors of this article
on the study of the dynamics, stability and controlla-
bility of pipeline systems, we note the works [Gladun
and Velmisov, 2019; Velmisov and Ankilov, 2016;
Velmisov and Ankilov, 2017; Velmisov and Ankilov,
2018; Velmisov and Ankilov, 2019; Velmisov and
Ankilov, 2021].
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It should be noted that due to the complexity of the
solution, there are fewer and fewer analytical studies
on the dynamics, stability and flutter of aircraft com-
ponents, including wing airfoils. Among the latter, we
note [Al-Mashhadani et al., 2017; Balakrishnan et al.,
2014; Shubov, 2014; Yonghong Li and Ning Qin, 2021;
Zachary et al., 2020]. In contrast to the direct Lyapunov
method used in this work, the presented works use fre-
quency methods suitable only for studying linear sys-
tems, various numerical methods, experimental studies.

Among the works of the authors of this article on
the study of the dynamics and stability of wing struc-
tures, we note the works [Ankilov and Velmisov, 2016;
Velmisov and Ankilov, 2015]. The presented work is
a continuation of the research [Velmisov and Ankilov,
2015] on the study of mathematical models of wing pro-
files constructions. The dynamic stability of the com-
ponents of these constructions – the elastic elements,
which are deformable plates, is investigated. The defi-
nitions of the stability of an elastic body adopted in this
work correspond to the Lyapunov concept of stability of
dynamical systems. The problem can be formulated as
follows: at what values of the parameters characterizing
the ”liquid-body” system (the main parameters are the
flow velocity, strength and inertial characteristics of the
body, compressive or tensile forces, friction forces), to
small deformations of the bodies at the initial moment
of time t = 0 (small initial deviations from the equilib-
rium position) will correspond the small deformations at
any moment of time t > 0.

2 Dynamic stability of the elastic connecting ele-
ment of the composite wing

2.1 Mathematical model
Let us consider the plane problem of aerohydroelas-

ticity about small vibrations arising in a noncirculating
flow around a wing profile, the two components of which
are connected by a deformable element, a gas or liquid
stream in the model of an ideal incompressible medium.

Let on the plane xOy in which the joint vibrations of
the deformed element and the gas occur, the component
parts correspond to the segments [a, b] and [c, d] on the
axis Ox, and the segment [b, c] to the deformed element
(Figure 1). At an infinitely distant point, the gas velocity
is equal V and has a direction that coincides with the
direction of the axis Ox.

Figure 1. Cross section of the wing

Let us introduce the notation: f±1 (x), f±2 (x) are the
functions that determine the shape of the composite non-
deformable parts of the profile; u(x, t), w(x, t), x ∈
(b, c) are the functions of element deformations in the

direction of the axesOx andOy; P (x, t) is aerodynamic
load on the element; φ(x, y, t) is the potential of the ve-
locity of the disturbed flow. Then the mathematical for-
mulation of the problem has the form:

∆φ ≡ φxx + φyy = 0, (x, y) ∈ G = R2\[a, d], (1)

φ±y (x, 0, t) =


V f±1

′
(x), x ∈ (a, b),

ẇ(x, t) + V w′(x, t), x ∈ (b, c),

V f±2
′
(x), x ∈ (c, d),

(2)

lim
x2+y2→∞

φx = 0, lim
x2+y2→∞

φy = 0, lim
x2+y2→∞

φt = 0, (3)

P (x, t) = ρ(φ+t (x, 0, t)− φ−t (x, 0, t))+

+ρV (φ+x (x, 0, t)− φ−x (x, 0, t)), x ∈ (b, c),
(4)

where the subscripts x, y, t below denote the derivatives
with respect to coordinates x, y and time t; prime and dot
denote derivatives with respect to x and t; φ±x (x, 0, t) =
lim

y→±0
φx(x, y, t); φ±y (x, 0, t) = lim

y→±0
φy(x, y, t). The

mathematical formulation (1)–(4) is written in a lin-
ear asymptotic approximation (corresponding to a thin
profile and small deformation of an elastic element),
obtained from exact equations and boundary condi-
tions using asymptotic expansions φ∗(x, y, t) = V x +
εφ(x, y, t) + ..., w∗(x, t) = εw(x, t) + ..., u∗(x, t) =
ε2u(x, t)+ ..., f±k∗(x) = εf±k (x)+ ..., where ε is a small
parameter characterizing the thickness of the composite
parts of the profile.

2.2 Solution of the aerodynamic part of the problem
In the domain G, assuming t as a parameter, we in-

troduce the complex potential W = f(z, t) = φ + iψ,
where ψ = ψ(x, y, t) is a flow function, z = x + iy.
Since f(z, t) is an analytic function of the complex vari-
able z, then ψx = −φy . Using the function ζ =

−
√
d− z
z − a we conformally map the domain G onto the

upper half-plane H = {ζ : Imζ > 0}, herewith√
d− z
z − a > 0 on the upper bank of the cut [a, d]. Us-

ing the Schwarz integral for the half-plane, taking into
account (2), (3) we find f(z(ζ), t). Passing to the limit
z → x ± i0, x ∈ (a, d), according to Sokhotskiy’s for-
mulas, we obtain the aerohydrodynamic impact (4) in
form:

P (x, t) = − ρ
π

c∫
b

(ẅ(τ, t) + V ẇ′(τ, t))K(τ, x)dτ−

−V ρ
π

c∫
b

(ẇ(τ, t) + V w′(τ, t))K ′x(τ, x)dτ+

+
V 2ρ

2π

b∫
a

(
f+1
′
(τ) + f−1

′
(τ)
)
K ′x(τ, x)dτ+

(5)
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+
V 2ρ

2π

d∫
c

(
f+2
′
(τ) + f−2

′
(τ)
)
K ′x(τ, x)dτ, x ∈ (b, c),

where K(τ, x) =

= 2 · ln

∣∣∣∣∣
√

(x− a)(d− τ) +
√

(τ − a)(d− x)√
(x− a)(d− τ)−

√
(τ − a)(d− x)

∣∣∣∣∣ , (6)

τ, x ∈ [a, d], τ 6= x. It is not hard to see that

K(τ, x) ≥ 0, K(τ, x) = K(x, τ). (7)

The impact (5) was obtained for any methods of fixing
a deformable element.

2.3 Models of deformable body
To study the dynamics of elastic elements and gas-

liquid medium two models of solid mechanics are used.
I. Linear model of an elastic body:

Mẅ(x, t) +Dw′′′′(x, t) +N(t)w′′(x, t)+

+β0w(x, t) + β1ẇ(x, t) + β2Iẇ
′′′′(x, t) =

= P (x, t), x ∈ (b, c).

(8)

II. Nonlinear model of an elastic body:

−EF2
(
2u′(x, t) + w′2(x, t)

)′
+

+Mü(x, t) = 0,

−EF2
[
w′(x, t)

(
2u′(x, t) + w′2(x, t)

)]′
+

+Mẅ(x, t) +Dw′′′′(x, t) +N(t)w′′(x, t)+

+β0w(x, t) + β1ẇ(x, t) + β2Iẇ
′′′′(x, t) =

= P (x, t), x ∈ (b, c),

(9)

where E, h, ρp are modulus of elasticity, thickness and
density of the element; N(t) is compressive or tensile
force of the element; D = EI, M = hρp are flexural
stiffness and linear mass of the element; F = h

1− ν2 ;

I = h3

12(1− ν2)
; ν is Poisson’s ratio; β2, β1 are coeffi-

cients of external and internal damping; β0 is coefficient
of stiffness of the base.

2.4 Investigation of stability for a linear model of an
elastic body

Consider a linear model of an elastic body (8). Since
the system of equations (5), (8) is linear, it suffices to
investigate the stability of the zero solution w(x, t) ≡ 0
of the corresponding homogeneous equation

Mẅ(x, t) +Dw′′′′(x, t) +N(t)w′′(x, t) + β0w(x, t)+

+β1ẇ(x, t) + β2Iẇ
′′′′(x, t) =

= − ρ
π

c∫
b

(ẅ(τ, t) + V ẇ′(τ, t))K(τ, x)dτ−
(10)

−V ρ
π

c∫
b

(ẇ(τ, t) + V w′(τ, t))K ′x(τ, x)dτ, x ∈ (b, c).

Suppose that the ends of the deformable element are
fixed either rigidly or hinged (in any combination), then
one of the conditions is fulfilled

1)w(ω, t) = w′(ω, t) = 0,

2)w(ω, t) = w′′(ω, t) = 0,
(11)

where ω = b or ω = c.
Let us obtain the sufficient conditions for the stabil-

ity of the solution to the zero solution of the integro-
differential equation (10) with respect to perturbations
of the initial conditions. Consider the functional

Φ =

c∫
b

{
Mẇ2 +Dw′′2 −N(t)w′2 + β0w

2
}
dx+

+
ρ

π

c∫
b

dx

c∫
b

ẇ(x, t)ẇ(τ, t)K(τ, x)dτ−

−ρV
2

π

c∫
b

dx

c∫
b

w′(x, t)w′(τ, t)K(τ, x)dτ.

(12)

Integration by parts, taking into account the conditions
(11), we get:

c∫
b

ẇw′′′′dx =

c∫
b

ẇ′′w′′dx,

c∫
b

ẇw′′dx =

= −
c∫

b

ẇ′w′dx,

c∫
b

ẇẇ′′′′dx =

c∫
b

ẇ′′
2
dx.

(13)

Substituting (10) into the derivative of the functional
(12) taking into account the equalities (13) and symme-
try of the kernel K(τ, x), we obtain

Φ̇ = −2

c∫
b

(
Ṅ(t)

2
w′2 + β2Iẇ

′′2 + β1ẇ
2

)
dx. (14)

The quadratic form under the integral sign in (14) is
positively semidefinite if the conditions

β1 ≥ 0, β2 ≥ 0, Ṅ(t) ≥ 0. (15)

be satisfied. Then from (14) we obtain the estimate

Φ̇ ≤ 0. (16)
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Integrating (16) from 0 to t, we obtain

Φ(t) ≤ Φ(0). (17)

It was proved that the following estimates are valid for
a kernel K(τ, x) of the form (6):

0 ≤
c∫

b

dx

c∫
b

ẇ(x, t)ẇ(τ, t)K(τ, x)dτ ≤

≤ K0

c∫
b

ẇ2(x, t)dx,

(18)

0 ≤
c∫

b

dx

c∫
b

w′(x, t)w′(τ, t)K(τ, x)dτ ≤

≤ G0

c∫
b

w′2(x, t)dx,

(19)

where K0 = sup
x∈[b,c]

c∫
b

|K(τ, x)| dτ,

G0 = sup
x∈[b,c]

c∫
b

|K(τ, x) + g1(x) + g1(τ)| dτ,

g1(x) is an arbitrary function integrable over x on the
segment [b, c], chosen so that the value G0 is the small-
est.

Taking into account (18), (19), we estimate Φ(t):

Φ(t) ≥
c∫

b

{
Mẇ2 +Dw′′2−

−
(
N(t) +

G0ρV
2

π

)
w′2 + β0w

2

}
dx.

(20)

According to the Rayleigh inequality [Kollatz, 1968],
the following estimate is valid:

c∫
b

w′′2(x, t)dx ≥ λ1

c∫
b

w′2(x, t)dx, (21)

where λ1 is the smallest eigenvalue of a boundary value
problem ωIV (x) = −λω′′(x), x ∈ [b, c] with boundary
conditions corresponding to (11).

Taking into account (21), from (20) we obtain

Φ(t) ≥
c∫

b

{
Mẇ2+β0w

2+

+

(
λ1D −N(t)− G0ρV

2

π

)
w′2
}
dx.

(22)

Consider the quadratic form under the integral sign in
(22). Assuming that the quadratic forms with respect

to ẇ(x, t), w′(x, t) will be positively definite, and the
quadratic form with respect to w(x, t) will be positively
semidefinite, we obtain the conditions

M > 0, β0 ≥ 0, N(t) < λ1D −
G0ρV

2

π
. (23)

Then we obtain the inequality Φ(t) ≥ 0.
From (17), (22), taking into account the Cauchy-

Bunyakovsky inequality

w2(x, t) ≤ (c− b)
c∫

b

w′2(x, t)dx,

we obtain the estimate(
λ1D −N(t)− G0ρV

2

π

)
w2(x, t)

c− b
≤ Φ(0), (24)

from which the solution w(x, t) is estimated by the ini-
tial values of this function and its derivatives.

Since, under conditions (15), (23), the functional (12)
satisfies the conditions Φ̇(t) ≤ 0, Φ(t) ≥ 0, then deriva-
tives ẇ(x, t), w′(x, t) are stable with respect to pertur-
bations of the initial conditions. From inequality (24),
we can conclude that the solution w(x, t) is stable with
respect to perturbations of the initial data. Thus, we have
proved the following theorem.

Theorem 2.1. If the function w(x, t) satisfies the boun-
dary conditions (11) and conditions (15), (23) are satis-
fied, then the solution w(x, t) of equation (10) and the
derivatives ẇ(x, t), w′(x, t) are stable with respect to
perturbations of the initial data.

2.5 Investigation of stability for a nonlinear model
of an elastic body

Consider a nonlinear model of an elastic body (9).
Assuming about symmetry of wing profiles f+1 (x) =
−f−1 (x), f+2 (x) = −f−2 (x) the system of equations (5),
(9) takes the form

−EF2
(
2u′(x, t) + w′2(x, t)

)′
+

+Mü(x, t) = 0,

−EF2
[
w′(x, t)

(
2u′(x, t) + w′2(x, t)

)]′
+

+Mẅ(x, t) +Dw′′′′(x, t) +Nw′′(x, t)+

+β0w(x, t) + β1ẇ(x, t) + β2Iẇ
′′′′(x, t) =

= − ρπ

c∫
b

(ẅ(τ, t) + V ẇ′(τ, t))K(τ, x)dτ−

−V ρπ

c∫
b

(ẇ(τ, t) + V w′(τ, t))K ′x(τ, x)dτ.

(25)
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For this system for a fixed end (x = b or x = c), it is
necessary to conditions (11) add condition u(x, t) = 0,

and for the movable end: u′(x, t) + 0.5w′
2
(x, t) = 0.

Based on research of the functional

Φ(t) =

c∫
b

(
EF

(
u′ + 0.5w′2

)2
+Mu̇2 +Mẇ2+

+Dw′′2 + β0w
2 −N(t)w′2

)
dx+

+
ρ

π

c∫
b

dx

c∫
b

ẇ(x, t)ẇ(τ, t)K(τ, x)dτ−

−ρV
2

π

c∫
b

dx

c∫
b

w′(x, t)w′(τ, t)K(τ, x)dτ

similarly, as in section 2.4, we investigated the stability
of the zero solution u(x, t) ≡ 0, w(x, t) ≡ 0 of the sys-
tem of equations (25) and proved the theorem.

Theorem 2.2. If the conditions (15), (23) are satisfied,
then the solution w(x, t) of the system of equations (25)
and the derivatives u̇(x, t), u′(x, t), ẇ(x, t), w′(x, t) are
stable with respect to perturbations of the initial data.

3 Dynamic stability of the elastic aileron of wing
3.1 Mathematical model

The plane problem of aeroelasticity about small oscil-
lations of a deformable aileron of the wing, in the trace
of which another wing is located (the wings are located
sequentially one after another along one line) with a sub-
sonic flow of an ideal incompressible gas around the
wings is also considered. Let on the planeOxy, in which
the joint oscillations of the deformable aileron and the
subsonic flow of an ideal gas (liquid) occur, to the first
wing corresponds a segment [a1, c1] on the axis Ox, to
the aileron – a segment [b1, c1], to the second wing – a
segment [a2, b2], where a2 > c1 (Figure 2). At an in-
finitely distant point, the gas velocity is equal V and has
a direction that coincides with the direction of the axis
Ox.

Figure 2. Cross-section of system of two wings of ”tandem” type

The mathematical formulation of the problem has the
form:

φxx + φyy = 0,

(x, y) ∈ G = R2\ ([a1, c1] ∪ [a2, b2]) ,
(26)

φ±y =

{
V f±k

′
(x), x ∈ (ak, bk), k = 1, 2,

ẇ(x, t) + V w′(x, t), x ∈ (b1, c1),
(27)

(
φ2x + φ2y + φ2t

)
∞ = 0, (28)

P (x, t) = ρ(φ+t − φ−t ) + ρV (φ+x − φ−x ),

x ∈ (b1, c1).
(29)

3.2 Solution of the aerodynamic part of the problem
In the domain G, assuming t as a parameter, we in-

troduce the complex potential W = f(z, t) = φ + iψ,
where ψ = ψ(x, y, t) is a flow function, z = x+ iy. For
the velocity function fz(z, t) = φx − iφy according to
equation (26) and conditions (27) we have the following
integral representation

fz(z, t) =

=
1

π
√
h(z)

− c1∫
b1

ẇ(τ, t) + V w′(τ, t)

τ − z
√
h(τ)dτ+

+Γ(t) +
V

2

b2∫
a2

f+2
′
(τ) + f−2

′
(τ)

τ − z
√
h(τ)dτ−

−V
2

b1∫
a1

f+1
′
(τ) + f−1

′
(τ)

τ − z
√
h(τ)dτ

−
(30)

− V
2π

b1∫
a1

f+1
′
(τ)− f−1

′
(τ)

τ − z
dτ−

− V
2π

b2∫
a2

f+2
′
(τ)− f−2

′
(τ)

τ − z
dτ ,

where h(z) = (z−a1)(z− c1)(z−a2)(b2− z); Γ(t) is
a function determining the circulation of the gas velocity
around each plate. Branch of the root in the formula (30)
is fixed by the condition√

h(z) = i
√

(x− a1)(x− c1)(x− a2)(x− b2),

z = x > b2.

We select the function Γ(t) so that the circulation
around each wing equaled zero. Then, integrating (30),
we find the complex potential. Passing to the limit
z → x ± i0, x ∈ (a1, c1), according to the formulas
Sokhotskiy, we obtain the aerohydrodynamic action (29)
in the form:

P (x, t) = − ρ
π

c1∫
b1

(ẅ(τ, t) + V ẇ′(τ, t))K(τ, x)dτ−
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−ρV
π

c1∫
b1

(ẇ(τ, t) + V w′(τ, t))K ′x(τ, x)dτ−

− ρV 2

π
√
h(x)

b1∫
a1

f+1
′
(τ) + f−1

′
(τ)

τ − x
√
h(τ)dτ+

(31)

+
ρV 2

π
√
h(x)

b2∫
a2

f+2
′
(τ) + f−2

′
(τ)

τ − x
√
h(τ)dτ,

where

K(τ, x) =

x∫
a1

√
h(τ)√

h(x)(τ − x)
dx− (32)

−

 c1∫
a1

dx√
h(x)

−1 · x∫
a1

dx√
h(x)

·
c1∫

a1

√
h(τ)√

h(x)(τ − x)
dx.

Note that kernel (32), in contrast to kernel (6), is asym-
metric and indefinite in sign. We decompose the kernel
into symmetric and skew-symmetric parts

K(τ, x) = G1(τ, x) +G2(τ, x),

G1(τ, x) =
K(τ, x) +K(x, τ)

2
,

G2(τ, x) =
K(τ, x)−K(x, τ)

2
.

(33)

3.3 Investigation of stability for a linear model of an
elastic body

Since the right end is free, then N(t) ≡ 0. Consider
a linear model of an elastic body (8). Since the system
of equations (8), (31) is linear, it is sufficient to investi-
gate the stability of the zero solution w(x, t) ≡ 0 of the
corresponding homogeneous equation:

Mẅ +Dw′′′′ + β0w + β1ẇ + β2Iẇ
′′′′ =

= − ρ
π

c1∫
b1

(ẅ(τ, t) + V ẇ′(τ, t))K(τ, x)dτ−

−ρV
π

c1∫
b1

(ẇ(τ, t) + V w′(τ, t))K ′x(τ, x)dτ.

(34)

Consider the case of elastic fastening of the left end of
the aileron with the wing and the free right end, then the
boundary conditions at the ends of the element are:

w(b1, t) = 0, w′′(b1, t) = αw′(b1, t),

w′′(c1, t) = 0, w′′′(c1, t) = 0,
(35)

where number α is the coefficient of stiffness of the elas-
tic connection between the aileron and the wing.

Consider the functional:

Φ =

c1∫
b1

(
(M + β1θ2) ẇ2 + 2 (θ1M + β0θ2)wẇ+

+ (D + β2Iθ1)w′′2 + (β0 + β1θ1)w2 + β2Iθ2ẇ
′′2+

+ 2Dθ2ẇ
′′w′′) dx+ 2αDθ2w

′(b, t)ẇ′(b, t)+

+αβ2Iθ2ẇ′
2
(b, t) + α (D + β2Iθ1)w′2(b, t)+

+
ρ

π

c1∫
b1

dx

c1∫
b1

ẇ(x, t)ẇ(τ, t)G1(τ, x)dτ−

−ρV
2

π

c1∫
b1

dx

c1∫
b1

w′(x, t)w′(τ, t)G1(τ, x)dτ−

−4ρV

π

c1∫
b1

dx

c1∫
b1

w′(x, t)ẇ(τ, t)G2(τ, x)dτ−

−2ρV θ2
π

c1∫
b1

dx

c1∫
b1

ẇ′(x, t)ẇ(τ, t)K(τ, x)dτ−

(36)

−2ρV 2θ2
π

c1∫
b1

dx

c1∫
b1

ẇ′(x, t)w′(τ, t)K(τ, x)dτ−

−2ρV θ1
π

c1∫
b1

dx

c1∫
b1

w′(x, t)w(τ, t)G1(τ, x)dτ−

−2ρV θ1
π

c1∫
b1

dx

c1∫
b1

w′(x, t)w(τ, t)G2(τ, x)dτ+

+
2ρθ1
π

c1∫
b1

dx

c1∫
b1

w(x, t)ẇ(τ, t)G2(τ, x)dτ,

where θ1, θ2 are some positive parameters.
Let us introduce the notation

G10 = sup
x∈[b1,c1]

c1∫
b1

|G1(τ, x)| dτ,

G20 = sup
x∈[b1,c1]

c1∫
b1

|G2(τ, x)| dτ,

K10 = sup
x∈[b1,c1]

c1∫
b1

|K(τ, x)| dτ,

K20 = sup
x∈[b1,c1]

c1∫
b1

|K(x, τ)| dτ.

(37)



CYBERNETICS AND PHYSICS, VOL. 10, NO. 3, 2021 207

Taking into account (37), we obtain the following esti-
mate for the derivative of the functional (36):

Φ̇ ≤ −2

c1∫
b1

{
(β2I −Dθ2) ẇ′′

2−

−ρV
2

π
(G20 + 4θ2G10 + θ1G10) ẇ′2(x, t)+

+

(
β1 − β0θ2 −Mθ1 −

ρG20

π

)
ẇ2 + (Mθ2−

− ρ
π

[3G20 + 4θ2G10 + θ1G10 + θ1G20]
)
ẅ2−

−ρV
2

π
(3G20 + 2θ1G10)w′2(x, t)+

+ Dθ1w
′′2 + θ1

(
β0 −

ρ

π
[2G10 +G20]

)
w2
}
dx−

−2α (β2I −Dθ2) ẇ′2(b1, t)− 2αDθ1w
′2(b1, t). (38)

To estimate the integrals in (38), we use the Cauchy-
Bunyakovsky and Rayleigh inequalities:

c1∫
b1

w′′2(x, t)dx ≥

≥ 2

(c1 − b1)2

c1∫
b1

(w′(x, t)− w′(b1, t))
2
dx,

c1∫
b1

ẇ ′′
2
(x, t)dx ≥

≥ 2

(c1 − b1)2

c1∫
b1

(
ẇ ′ (x, t)− ẇ ′(b1, t)

)2
dx,

(39)

c1∫
b1

ẇ′′
2

(x, t)dx+ αẇ′
2
(b1, t) ≥

≥ µ1

c1∫
b1

ẇ2(x, t)dx,

c1∫
b1

w′′2(x, t)dx+ αw′2(b1, t) ≥

≥ µ1

c1∫
b1

w2(x, t)dx,

(40)

where µ1 is the smallest eigenvalue of the boundary
value problem for an equation ψIV (x) = µψ(x), x ∈
[b1, c1] with boundary conditions (35). This problem is
self-adjoint and fully defined under a certain condition

α ≥ 0. (41)

Let the conditions

β2I −Dθ2 > 0, χ1 ∈ (0, 1], χ2 ∈ (0, 1], (42)

M ≥ ρ

θ2π
[3G20 + 4θ2G10 + θ1G10 + θ1G20] , (43)

be satisfied, where

χ1 =


1, δ1 ≥ 0,

1 + δ1
(β2I −Dθ2)µ1

, δ1 < 0,

δ1 = β1 − β0θ1 −Mθ1 −
ρG20

π
,

χ2 =

1, δ2 ≥ 0,

1 + δ2
Dπµ1

, δ2 < 0,

δ2 = β0 −
ρ

π
[2G10 +G20] ,

then from (38) we obtain

Φ̇ ≤ −2

c1∫
b1

{
−4 (β2I −Dθ2)χ1

(c1 − b1)2
ẇ′(x, t)ẇ′(b1, t)+

+

[
2 (β2I−Dθ2)χ1

(c1 − b1)2
− ρV

2

π
(G20+G10(4θ2 + θ1))

]
×

×ẇ′2(x, t) +
(β2I −Dθ2)χ1

(c1 − b1)2
[2 + α(c1 − b1)]×

×ẇ′2(b1, t)+

[
2Dχ2θ1

(c1 − b1)2
− ρV 2

π
(3G20 + 2θ1G10)

]
×

×w′2(x, t)− 4Dχ2θ1
(c1 − b1)2

w′(x, t)w′(b1, t)+

+
Dχ2θ1

(c1 − b1)2
[2 + α(c1 − b1)]w′2(b1, t)

}
dx. (44)

Thus, we have obtained two quadratic forms with re-
spect to ẇ′(x, t), ẇ′(b1, t) and w′(x, t), w′(b1, t). Let
us write down the conditions for their positive semi-
definiteness:[

2 (β2I −Dθ2)πχ1 − ρV 2(c1 − b1)2 (G20+

+4θ2G10 + θ1G10)] [2 + α(c1 − b1)] ≥
≥ 4π (β2I −Dθ2)χ1,[

2Dπχ2θ1 − ρV 2(c1 − b1)2 (3G20+

+2θ1G10)] [2 + α(c1 − b1)] ≥ 4Dπχ2θ1.

(45)

Taking into account (45), the inequality (44) takes the
form:

Φ̇ ≤ 0 ⇒ Φ(t) ≤ Φ(0). (46)
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We obtain an estimate for functional (36) using in-
equalities (39), (40):

Φ ≥
c1∫

b1

{((1− χ5 − χ6)β2Iθ2µ1 +M + β1θ2−

− ρ

π
[G10 + 2G20 + θ2K20 + θ1G20]

)
ẇ2(x, t)+

+2 (β0θ2 +Mθ1) ẇ(x, t)w(x, t) + ((1− χ3 − χ4)×

× (D + β2Iθ1)µ1 −
ρθ1
π

[K20 +G20] +

+β0 + β1θ1)w2(x, t)
)
dx+

c1∫
b1

{(D + β2Iθ1)×

×χ4w
′′2(x, t) + 2Dθ2ẇ

′′(x, t)w′′(x, t)+

+ β2Iθ2χ6ẇ
′′2(x, t)

}
dx+

c1∫
b1

{(
2χ3 (D + β2Iθ1)

(c1 − b1)2
−

−ρV
2

π
[G10 + 2G20 + θ2K20 + θ1K10]

)
w′2(x, t)−

−4χ3 (D + β2Iθ1)

(c1 − b1)2
w′(x, t)w′(b1, t)+

+
D + β2Iθ1
(c1 − b1)2

[2χ3 + α(χ3 + χ4)(c1 − b1)]w′2(b1, t)+

+

(
2β2Iθ2χ5

(c1 − b1)2
− 2ρV 2θ2K10

π

)
ẇ′

2
(x, t)−

− 4β2Iθ2χ5

(c1 − b1)2
ẇ′(x, t)ẇ′(b1, t)+

β2Iθ2
(c1 − b1)2

[2χ5 + α(χ5 + χ6)(c1 − b1)] ẇ′
2
(b1, t)+

+
2αDθ2
c1 − b1

w′(b1, t)ẇ
′(b1, t)

}
dx, (47)

where additional parameters

χ3 ∈ (0, 1], χ4 ∈ (0, 1], χ5 ∈ (0, 1],
χ6 ∈ (0, 1], χ3 + χ4 ∈ (0, 1], χ5 + χ6 ∈ (0, 1]

(48)

are introduced.
The quadratic form with respect to ẇ(x, t), w(x, t), in

(47) will be positive definite if the following conditions

(1− χ5 − χ6)β2Iθ2µ1 +M + β1θ2−

− ρ
π

[G10 + 2G20 + θ2K20 + θ1G20] > 0,

((1− χ5 − χ6)β2Iθ2µ1 +M + β1θ2−

− ρ
π

[G10 + 2G20 + θ2K20 + θ1G20])×

× ((1−χ3−χ4) (D+β2Iθ1)µ1+β0+β1θ1−

−ρθ1
π

[K20 +G20])− (β0θ2 +Mθ1)
2 ≥ 0,

(D + β2Iθ1)β2Iχ4χ6 −D2θ2 ≥ 0,

a11 > 0, a33 > 0, a11a22 − a212 > 0,(
a11a22−a212

) (
a33a44−a234

)
−a11a33a224 > 0

(49)

are satisfied, where

a11 =
2χ3 (D + β2Iθ1)

(c1 − b1)2
− ρV 2

π
[G10 + 2G20+

+θ2K20 + θ1K10] , a12 = −2χ3 (D + β2Iθ1)

(c1 − b1)2
,

a22 =
D + β2Iθ1
(c1 − b1)2

[2χ3 + α(χ3 + χ4)(c1 − b1)] ,

a33 =
2β2Iθ2χ5

(c1 − b1)2
− 2ρV 2θ2K10

π
,

a44 =
β2Iθ2

(c1 − b1)2
[2χ5 + α(χ5 + χ6)(c1 − b1)] ,

a34 = − 2β2Iθ2χ5

(c1 − b1)2
, a24 =

αDθ2
c1 − b1

.

Let conditions (48), (49) be satisfied, then, taking into
account the Cauchy-Bunyakovsky inequality

w2(x, t) ≤ (c1 − b1)

c1∫
b1

w′2(x, t)dx

from (46), (47) we obtain the estimate
a11a33a

2
24+a212a33a44−a212a234

a22 (a33a44 − a234) (c1 − b1)
w2(x, t)≤Φ(0). (50)

Thus, we have proved the following theorem.

Theorem 3.1. Let the function w(x, t) satisfy the boun-
dary conditions (35) and for any moment of time will
be found the parameters θ1 > 0, θ2 > 0, χi, i = 1, 6
such that conditions (41), (42), (43), (45), (48), (49) are
satisfied. Then the solution w(x, t) of equation (34) and
the derivatives ẇ(x, t), w′(x, t) are stable with respect
to perturbations of the initial data.

4 Galerkin’s method
4.1 Linear model

The solution of equations (10), (34) is found by the
Galerkin’s method in the form

w(x, t) =

m∑
k=1

ak(t)gk(x), (51)

where gk(x) are basis functions, selected so that the
specified boundary conditions (11), (35) are fulfilled,
and the functions ak(t) are determined from the condi-
tion of orthogonality of the residual of the equation to
the system of the basis functions.

As a basis we take the functions

gk(x) = Ak cos γk(x− b) +Bk sin γk(x− b)+
+Ckchγk(x− b) +Dkshγk(x− b),

k = 1, 2, 3, . . .

(52)
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We choose the coefficientsAk, Bk, Ck, Dk and the pa-
rameter γk so that at each endpoint of the segment [b, c]
the boundary conditions are satisfied. Note that γk and
gk(x) are the eigenvalues and eigenfunctions of bound-
ary value problems for the equation gIVk (x) = γ4gk(x).
These problems are self-adjoint and fully defined, there-
fore, the system of functions {gk(x)}∞k=1 is orthogo-
nal on [b, c]. In this case, according to the decompo-
sition theorem, any function U(x), four times contin-
uously differentiable in (b, c) and satisfying the corre-
sponding boundary conditions can be expanded in a se-

ries U(x) =
∞∑
k=1

akgk(x), absolutely and converging

uniformly in (b, c).
Taking into account (51), the conditions for orthog-

onality of the residual of equations (10), (34) to basis
functions {gj(x)}mj=1 of the form (52) allow us to write
the system of equations[
Mäj(t)+(β2Iγ

4
j +β1)ȧj(t)+(Dγ4j +β0)aj(t)

]
δj+

+N(t)

m∑
k=1

ak(t)

c∫
b

g′′k (x)gj(x)dx = (53)

=

c∫
b

P (x, t)gj(x)dx, δj =

c∫
b

g2j (x)dx, j = 1,m.

The conditions for orthogonality of the residuals of the
initial conditions w(x, 0) = f1(x), ẇ(x, 0) = f2(x) to
the basis functions make it possible to find the initial val-
ues:

aj(0) =
1

δj

c∫
b

f1(x)gj(x)dx,

ȧj(0) =
1

δj

c∫
b

f2(x)gj(x)dx.

(54)

Thus, we have obtained the Cauchy problems for sys-
tems of ordinary differential equations (53) with initial
conditions (54).

4.2 Nonlinear model
In the case of a motionless fixation of the ends of the

element, according to the Galerkin’s method, the solu-
tion of the system of equations (25) is sought in the form

u(x, t) =

m∑
k=1

ak(t)g
(1)
k (x),

w(x, t) =

m∑
k=1

bk(t)g
(2)
k (x).

(55)

In (55) we select the basis functions g(1)k (x), g
(2)
k (x)

so that so that the given boundary conditions are sat-
isfied, and the functions ak(t), bk(t) are determined

from the condition of orthogonality of the residual of
the first equation of the system to all basis functions
g
(1)
k (x), and the residuals of the second equations – to
g
(2)
k (x), k = 1÷m. As basic functions g(2)k (x) we take

functions of the form (52), and as basis functions g(1)k (x)
take the functions

g
(1)
k (x) = Ak cos γ

(1)
k x+Bk sin γ

(1)
k x,

k = 1, 2, 3, . . .
(56)

We choose the coefficients Ak, Bk and the parameter
γ
(1)
k so that at each endpoint of the segment [b, c] one of

the following conditions

1) g
(1)
k (x) = 0, 2) g

(1)
k

′
(x) = 0, k = 1, 2, 3, . . . (57)

is fulfilled. Note that γ(1)k and g
(1)
k (x) are eigenval-

ues and eigenfunctions of the boundary value problem
g′′(x) = −γ2g(x) with boundary conditions (57). These
problems are self-adjoint and completely definite, there-
fore, the system of functions {gk(x)}∞k=1 is orthogonal
on [b, c].

Substituting (55) into the system of equations (25),
from the condition of the orthogonality of the resid-
uals of the first equation (25) to the basis functions
{g(1)j (x)}mj=1, the second to {g(2)j (x)}mj=1 we obtain the
system of ordinary differential equations for aj(t), bj(t):

Mδ
(1)
j äj(t) + EFγ

(1)
j

2
δ
(1)
j aj(t)−

−EF
m∑
i=1

m∑
s=1

Aisjbi(t)bs(t) = 0,

−EF
m∑
i=1

m∑
s=1

Bisjbi(t)as(t)−

− 3EF
2

m∑
i=1

m∑
s=1

m∑
k=1

Ciskjbi(t)bs(t)bk(t)+

+N(t)
m∑

k=1

bk(t)
c∫
b

g
(2)
k

′′
(x)g

(2)
j (x)dx+

+
[
Dγ

(2)
j

4
bj(t) +Mb̈j(t) + β2Iγ

(2)
j

4
ḃj(t)+

+β1ḃj(t)+β0bj(t)
]
δ
(2)
j =

c∫
b

P (x, t)g
(2)
j (x)dx,

(58)

where

δ
(1)
j =

c∫
b

g
(1)
j

2
(x)dx, δ

(2)
j =

c∫
b

g
(2)
j

2
(x)dx,

Aisj =

c∫
b

g
(2)
i

′
(x)g(2)s

′′
(x)g

(1)
j (x)dx, Bisj =

=

c∫
b

(
g
(2)
i

′
(x)g(1)s

′′
(x) + g

(2)
i

′′
(x)g(1)s

′
(x)
)
g
(2)
j (x)dx,

Ciskj =

c∫
b

g
(2)
i

′
(x)g(2)s

′
(x)g

(2)
k

′′
(x)g

(2)
j (x)dx.
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The conditions of orthogonality of the residuals of the
initial conditions w(x, 0) = f1(x), ẇ(x, 0) = f2(x),
u(x, 0) = f3(x), u̇(x, 0) = f4(x) to the basis functions
allows to find the initial values:

aj(0) =
1

δ
(1)
j

c∫
b

f3(x)g
(1)
j (x)dx,

ȧj(0) =
1

δ
(1)
j

c∫
b

f4(x)g
(1)
j (x)dx,

bj(0) =
1

δ
(2)
j

c∫
b

f1(x)g
(2)
j (x)dx,

ḃj(0) =
1

δ
(2)
j

c∫
b

f2(x)g
(2)
j (x)dx.

(59)

Thus, we have obtained the Cauchy problem for a sys-
tem of ordinary differential equations (58) with initial
conditions (59).

5 Program complex
For solving of the obtained Cauchy problems a com-

plex of programs ”Aerohydroelasticity” has been devel-
oped [Ankilov and Velmisov, 2021].

To start the calculations, enter:
– type of construction;
– model of a deformable solid;
– the type of fastening of the ends of the element;
– initial conditions;
– parameters of the mechanical system;
– order of approximation m;
– estimated time T .
Then the program checks:
– correspondence between the type of structure and the

type of fastening of the elastic element;
– correspondence of the initial and boundary condi-

tions
and produces:
– calculation of the coefficients D, M , I , F ;
– calculation of eigenvalues and eigenfunctions;
– calculation of integral members of systems;
– solution of systems of ordinary differential equa-

tions;
– construction of three-dimensional graphs of element

deformations;
– construction of animation graphs of element defor-

mations;
– construction of flat graphs of deformations and strain

rate in a given point or at a given moment in time.

6 Numerical experiment
Let’s consider an example of calculations using the

programs complex. We introduce:
1) type of construction – wing with a connecting ele-

ment;

2) model of a deformable rigid body (9);
3) parameters of the mechanical system:

V = 20, ρ = 1, E = 20.6 · 1010, ρp = 7850, a = 0,

b = 1, c = 1.3, d = 2, h = 0.01, ν = 0.25, β0 = 400,

β1 = 40, β2 = 20, N(t) = 1000;

4) type of fastening ”rigid-hinged”;
5) profile forms

f+1 (x) = 0.05x(b− x)2,

f−1 (x) = −0.05x(b− x)2,

f+2 (x) = 0.0125(x− c)(d− x)2,

f−2 (x) = −0.0125(x− c)(d− x)2;

6) initial conditions

f1(x) = 0.001g
(2)
1 (x), f2(x) = −0.0005g

(2)
2 (x),

f3(x) = 0.0001g
(1)
1 (x), f4(x) = 0.00005g

(1)
2 (x);

7) order of approximation m = 4 and estimated time
T = 5.

For the proposed parameters of the mechanical sys-
tem, conditions (15) and the first two conditions (23)
are satisfied. For the type of fastening ”rigid-hinged”

we count λ1 =
(

4.4934
c− b

)2
= 224.34. Choosing a

function g1(x) = 3.7
√

(x− b)(c− b) − 3.5, we find
G0 = 0.54. Consequently, the third condition (23)
is satisfied. According to Theorem 2.2, the solution
w(x, t) of the system of equations (25) and the deriva-
tives u̇(x, t), u′(x, t), ẇ(x, t), w′(x, t) are stable with re-
spect to perturbations of the initial data.

Figures 3, 4 show examples of calculations of the trans-
verse w(x, t) and longitudinal u(x, t) deformation at the
point x0 = 1.15.

Figures 5 and 6 show examples of calculations of the
transverse w(x, t) and longitudinal u(x, t) deformation
of the element at time t0 = 1.

Indeed, according to Figure 3 and to the continuation
of the graph on a larger time interval, the stability of vi-
brations of the elastic element is observed.

Figure 3. Transverse deformation of element at point x0
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Figure 4. Longitudinal deformation of element at point x0

Figure 5. Transverse deformation of element at moment of time t0

Figure 6. Longitudinal deformation of element at moment of time t0

7 Conclusion
On the basis of the proposed mathematical models of

wing constructions, streamlined by a subsonic flow of
an ideal liquid or gas, a study of the dynamics and sta-
bility of elastic deformable elements, which are compo-
nents of these constructions, has been carried out. The
obtained stability conditions impose restrictions on the
linear mass and bending stiffness of the elements, com-
pressive (tensile) forces, the incident flow velocity and
other parameters of the mechanical system. These con-
ditions obviously contain the main parameters of the me-
chanical system, and in this form they are most suitable
for solving problems of optimization, automatic control,
computer-aided design.
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