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Abstract
The paper proposes a new algorithm for constructing

the velocity field, which is based on the study of the in-
tegral functional on the ensemble of trajectories. The
resulting analytical representation of the variation of
the integral functional gives us the gradient of the in-
vestigated functional. It allows to find the desired pa-
rameters using gradient methods, which determine the
velocity field. This approach allows both optical flow
and non-optical flow construction. The proposed algo-
rithm can be used in the analysis of various images, in
particular in radionuclide image processing.
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1 Introduction
There is a large number of image processing al-

gorithms corresponding to different purposes: image
restoring, improving image quality, object recognition
and motion analysis, contour detection etc. All these
types of processing are important for radionuclide im-
ages, in particular image analysis based on the veloc-
ity field construction. Radionuclide image processing
based on the velocity field determining was considered
in papers [Kotina and Ovsyannikov, 2018; Kotina and
Pasechnaya, 2014; Kotina and Ploskikh, 2012; Kotina,
Ploskikh, and Babin, 2013].

The problem of the velocity field determining is con-
sidered in the literature by many authors in various for-
mulations [Anandan, 1989; Barron, Fleet, and Beau-
chemin, 1994; Black and Anandan, 1996; Bruhn, We-
ickert, and Schnorr, 2005; Fleet and Weiss, 2005; Horn
and Schunck, 1981; Sun D., Roth S., and Black, 2010].
The most famous formulation of the problem using
the concept of optical flow assumes the constancy of
brightness along the trajectories of the system under
consideration [Horn and Schunck, 1981]. As an im-
age property, not only the brightness but its gradient,
Laplacian or Hessian are also considered [Papenberg
et al, 2006]. In this formulation, functionals of quality
(energy function) are constructed, which also include
in addition spatial smoothness assumptions for the re-
quired velocity field [Horn and Schunck, 1981; Black
and Anandan, 1996]. The task of minimization of the
constructed functionals is reduced to solving the corre-
sponding Euler-Lagrange equations. These equations
can be reduced to sparse linear systems of large or-
der, which are solved by block iterative methods. In
works [Kotina and Ovsyannikov, 2018; Ovsyannikov
and Kotina, 2012] the approaches for obtaining the ve-
locity field in case of non-optical flow are suggested
and corresponding Euler-Lagrange equations are ob-
tained. In the work [Kotina, 2010], an optimization
algorithm for constructing the velocity field based on
discrete systems is proposed.
This paper proposes a new algorithm for the velocity

field construction, which is based on the variation of the
integral functional in the problems of trajectory ensem-
bles control presented in works [Ovsyannikov, 1990;
Ovsyannikov, 2012]. It is assumed that the brightness
(density) along the trajectories can change. The veloc-
ity field is considered as a function depending on the
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vector of unknown parameters. In this paper, illustra-
tions of the work of the proposed algorithm are pre-
sented.

2 Problem Statement
Let us consider a system of differential equations

ẋ = f(t, x, u). (1)

Here t — time, x — spatial coordinate vector,
x ∈ Rn, u — parameter vector, u ∈ Rr, f —
sufficiently smooth vector-function.
We assume that the movement is described by the

system (1). Let us introduce the distribution density
ρ = ρ(t, x), which plays the role of the mass or charge
density in various problems of mechanics and electro-
dynamics. In our case, it is quantitative characteris-
tics of the image (brightness) depending on the spa-
tial coordinates and time, or the intensity of radiophar-
maceutical distribution in the processing of radionu-
clide studies [Kotina and Ovsyannikov, 2018; Kotina
and Pasechnaya, 2014]. The equation which for a
given vector function f(t, x, u) determines the change
in the density function in space over time has the form
[Ovsyannikov, 1990]:

∂ρ(t, x)

∂t
+
∂ρ(t, x)

∂x
f(t, x, u) + ρdivxf(t, x, u) = 0,

(2)
where

divxf(t, x, u) =
n∑

i=1

fi(t, x, u)

∂xi
.

Initial condition for the equation (2) is

ρ(0, x) = ρ0(x), (3)

where ρ0(x) — given function.
We assume that function ρ = ρ(t, x) is given and

we have to reconstruct function f(t, x, u), which de-
termines the required velocity field. Here parameter
vector u = (u1, u2, . . . , ur) is considered as unknown.
We consider the problem of reconstruction of param-

eter vector u as an optimization problem. Therefore
we use the methods of optimization of charged parti-
cle beam dynamics presented in works [Ovsyannikov,
1980; Ovsyannikov, 1990; Ovsyannikov, 2012].
Let M0 ∈ Rn be the set of initial values for the

system (1). We assume that set M0 is a closed set and
has nonzero Lebesgue measure. The solutions of the
system (1) we denote by

x(t) = x(t, x0, u), x0 ∈ M0. (4)

The set of these solutions is called trajectory beam (or
beam), coming from the set M0 for a given parameter
vector u.
We denote by Mt,u cross-section of the trajectory

beam at time t for the fixed vector u:

Mt,u = {x(t) = x(t, x0, u), x0 ∈ M0}. (5)

Let ρ0(x) — a known density (brightness) at the mo-
ment t = 0, which determines an image. Let us fur-
ther assume that we know the density (brightness) ρ̂(x),
characterizing changed image in time ∆t, here ∆t is
small enough. Let us fix time T = ∆t. The problem is
to find the vector of parameters u so that at the time T
the density distribution calculated by the equation (2)
with condition (3) would coincide with the density dis-
tribution ρ̂(x), that is,

ρ(T, x) = ρ̂(x). (6)

Let us formulate the optimization problem. For that
introduce a functional

J(u) =

∫
MT,u

g(xT , ρ(T, xT ))dxT , (7)

here MT,u — cross-section of trajectory beam for a
moment T , g(x, ρ) —non-negative continuously differ-
entiable on x and ρ function. For instance, as function
g(x, ρ) the following function could be taken:

g(x, ρ(T, x)) = (ρ(T, x(T ))− ρ̂(x(T )))
2
, (8)

where ρ̂(x) — given density in Rn. Let us note, that
the moment T is fixed here, but it also could be varied.
We will solve the following problem: to find a mini-

mum of the functional (7) when u ∈ U ⊂ Rr, U is a
compact convex subset of Rr.
Solving the problem of minimization of the functional

(7) and determining the vector u, we solve the problem
of function f(t, x, u) reconstruction, i.e. we determine
the velocity field given by the formula (1).

3 Variation and gradient of functional
Let us follow the work [Ovsyannikov, 1990] and write

down the variation of the functional (7) as

δJ = −
∫ T

0

∫
Mt,u

[ψ∗(t, xt)∆uf(t, xt, u)+

λ(t, xt)∆udivxf(t, xt, u)]dxtdt,

(9)

here

∆uf(t, xt, u) = f(t, xt, u+∆u)− f(t, xt, u),
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∆udivxf(t, xt, u) = divxf(t, xt, u+∆u)

−divxf(t, xt, u),

vector-function ψ(t, x) and function λ(t, x) are auxil-
iary functions, which satisfy along the trajectories of
system (1) the following equations:

dψ

dt
= −

(
∂f(t, x(t), u)

∂x
+ Edivxf(t, x(t), u)

)∗

−

λ

(
∂divxf(t, x(t), u)

∂x

)∗

,

(10)

dλ

dt
= −λdivxf(t, x(t), u) (11)

with final conditions

ψ∗(T, x(T )) = −∂g(x(T ), ρ(T, x(T )))
∂x

, (12)

λ(T, x(T )) = −g(x(T ), ρ(T, x(T )))+
∂g(x(T ), ρ(T, x(T )))

∂ρ
ρ(T, x(T )).

(13)

The determination of variation (9) is based on the use
of the transformation of trajectory beams along cross-
sections [Ovsyannikov, 1980; Ovsyannikov, 1990;
Ovsyannikov, 2012] using the variational equations for
(1), (2).
Let us assume that function f is differentiable with

respect to u. Then, taking into account convexity of
set U and using (9), we obtain an expression for the
gradient of the functional (7)

∂J

∂u
= −

∫ T

0

∫
Mt,u

[
ψ∗ ∂f

∂u
+ λ

∂divxf

∂u

]
dxtdt.

(14)
The complete output is presented in works [Ovsyan-
nikov, 1980; Ovsyannikov, 1990].
The resulting expression (14) could be used for imple-

mentation of the optimization algorithm for determin-
ing velocity field.
By using the functional gradient expression (14) it

is possible to construct various methods of directed
search of vector u.
Let us note, that methods of parametric optimization

and the optimal parameters obtaining on the basis of
gradient techniques are used for many different prob-
lems [Andrianov and Edamenko, 2014; Aminov and
Ovsyannikov, 2015; Shalymov, Fradkov, Liubchich,
and Sokolov, 2017; Zavadskiy and Kiktenko, 2014].

4 The Velocity Field Determining Algorithm
Let us note that it follows from equation (2) that the

derivative along the trajectories of system (1) satisfies
equation

dρ

dt

∣∣∣∣
(1)

= −ρdivxf(t, x(t, x0, u), u). (15)

Solution of the equation (15) with initial condition

ρ(0, x0) = ρ0(x0) (16)

can be represented as

ρ(t, x(t, x0, u)) = ρ0(x0) · e−
∫ t
0
divxf(τ,x,u)dτ . (17)

Under images processing the form of the func-
tion f(t, x, u) is unknown. Therefore, the function
f(t, x, u) can be considered as a function represented
by a segment of some series, for example, of the Taylor
series. The coefficients of the series are the required
parameter vector u. In particular, at the first stage of
constructing the velocity field we can consider function
f(t, x, u) as a linear vector-function, i.e.

ẋ = Ax+ C, (18)

where A = {aij}ni,j=1 is a square matrix, C =
{cij}ni=1 is a vector. Parameter vector u consists of
the components of matrix A and vector C, i. e. u =
(a11, a12, . . . , ann, c1, . . . , cn)

∗. The superscript ∗ de-
notes the transposition of the vector. As before, we
assume that u ∈ U , where U is a compact set. By ob-
taining uwe determine the system (18) and the velocity
field.
Let us consider a particular case of n = 2 — the pla-

nar image case. In this case, the system (18) is a second
order differential equation system.
Let us write out the gradient of the functional (14) for

this case:

∂J

∂aii
= −

∫ T

0

∫
Mt,u

[ψixi + λ] dxtdt, i = 1, 2,

∂J

∂aij
= −

∫ T

0

∫
Mt,u

ψixjdxtdt, i, j = 1, 2,

∂J

∂ci
= −

∫ T

0

∫
Mt,u

ψidxtdt, i = 1, 2,

(19)
The equations (10), (11) will be the following:

dψ

dt
= − [A+ E(a11 + a22)]

∗
ψ,

dλ

dt
= −(a11 + a22)λ

(20)
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Figure 1. The algorithm block-scheme

with final conditions

ψ(T, x(T ))∗ = −2(ρ(T, x(T ))− ρ̂(x(T )))·
∂ρ(T, x(T ))

∂x
,

(21)

λ(T, x(T ))∗ = −(ρ(T, x(T ))− ρ̂(x(T )))2+

(ρ(T, x(T ))− ρ̂(x(T )))ρ(T, x(T )).
(22)

The equation (17) has a form

ρ(t, x(t, x0, u)) = ρ0(x0) · e−(a11+a22)·t. (23)

Let us consider the iterative algorithm for determining
the velocity field. We assume that M0, ρ0(x), ρ̂(x) are
given and T (small enough) is fixed. The algorithm
consists of the following main steps:

1. Define the vector of initial values for the unknown
parameters u0 = (u01, u

0
2, . . . , u

0
n). Let k = 0;

2. Start of k-th iteration of algorithm;
3. Calculate the value of integral functional J(uk)

using expression (7);
4. Obtain the values of the auxiliary functions
ψ(t, x(t)) and λ(t, x, (t)) integrating equations
(20) in reverse order from T to 0 under conditions
(21), (22);

5. Calculate the gradient of the integral functional
∂J
∂u

∣∣
u=uk using the expression (14);

6. Obtain uk+1 with the gradient descent algorithm:

uk+1 = uk − µ̂∂J
∂u

∣∣∣∣
u=uk

, where µ̂ — parameter of

gradient descent algorithm;
7. Check the stop conditions: achieving a given ac-

curacy or a given number of iterations;
8. Let k = k + 1. Go to step 2.

The scheme of the algorithm for determining the ve-
locity field is presented in Figure 1.
The calculation of integrals in the described algorithm

can be done as follows. Let us consider step 3. We take
some finite partition Π = {ei}Ni=1 of the set M0, such
that mes(ei) 6 σ, where σ is a small positive value.
For example, in a two-dimensional case, it would be a
partition of the image into pixels.
Let us represent the integral (7) in the form

J(uk) ≈
N∑
i=1

g
(
x(T, x0i, u

k), ρ(T, x(T, x0i, u
k), uk)

)
·

mes(x(T, ei, u
k)),

where g — integrand vector function calculated at the
moment T at point x(T ) of the trajectory of the system
(1) with a fixed parameter vector uk coming from the
point x0i ∈ ei, mes(x(T, ei, uk)) — measure of the
set image ei according to the system (1) for a given
parameter vector uk, at time T .
For calculation of g

(
x(T, x0i, u

k), ρ(T, x(T, x0i, u
k)
)

it is necessary to integrate the system (1) from 0 to
T for a given parameter vector uk with initial con-
ditions x(0) = x0i, i = 1, 2, . . . , N and also to find
ρ(T, x(T, x0i, u

k)) according to the formula (17).
The measure of the set x(T, ei, uk) can be calculated

taking into account the expression for the Jacobian of
the transformation x(T ) = x(T, x0, u

k). Then we have

mes(x(T, ei, u
k)) = e

∫ T
0

sp
∂f(τ,x(τ,x0i,u

k),uk)

∂x dτ

·mes(ei).

Let us consider step 5. The integrals over the set Mt,u

in the formula (19) are calculated similarly to the cal-
culation of integral in step 3 of the algorithm. Integral
from 0 to T , due to the smallness of T , can be calcu-
lated by the method of middle rectangles.
For the described algorithm any gradient de-

scend method could be used. In this work
the BFGS method (Broyden—Fletcher—Goldfarb—
Shanno) [Nocedal and Wright, 2006] was used, which
implementation is included in various mathematical
packages. In this work the BFGS implementation from
Octave package was used.
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It should be noted that the described algorithm could
be used in general case with different representations
of function f(t, x, u). Linear representation was used
as an example.

5 Implementation
In this section we consider test images and obtained

in dynamic data acquisition mode radionuclide images.
The radionuclide dynamic study is conducted as fol-
lows: the radiopharmaceutical is injected to the pa-
tient’s body and then data collection begins. This mode

Figure 2. The sequence of radionuclide images of hepatobiliary
system study

allow to observe the distribution of indicator (radio-
pharmaceutical) in studying organism system depend-
ing on time and spatial coordinates (2), i. e. radio-
pharmaceutical density distribution ρ = ρ(t, x), t ∈
[0, T ], x ∈ M , or taking into account the discrete na-
ture of the obtained data we have the sequence of ma-
trices

ρ1(i, j), . . . , ρN (i, j), i, j = 0, 1, . . . , n. (24)

We will consider pairs of neighboring images of the se-
quence (24) and will define them as ρ0(i, j) and ρ̂(i, j).
Note that for the analysis of the image data both the
case of optical flow and the case of non-optical flow
are interesting. Let us note that we have the optical
flow, for example, if some motion of organ occurred
and we have non-optical flow if there is a significant
redistribution of the radiopharmaceutical in the consid-
ered system. By the algorithm proposed above we will
determine velocity field at the nodes of a square grid
with a step equal to the one pixel change in the distance
along any axis.

5.1 Optical Flow
In case of divxf = 0 in the equation (15) we have

optical flow, when it is assumed that the brightness re-
mains constant along the trajectories.

Thus, if we put in the corresponding formulas above
a11 = −a22, then proposed algorithm could be consid-
ered as new algorithm for determining optical flow.

a) b)

c)

Figure 3. a) Initial image b) Rotated image c) Velocity field

Figure 3 presents test images: initial image, initial im-
age which is rotated relative to its center and contains
some noise, obtained velocity field, which is shown in
the initial image.
Let us consider the work of the described algorithm on

radionuclide images. There are images of the gallblad-
der in Figure 4, and we can see the shift of gallblad-
der from one frame to another. The first image shows
the constructed velocity field, which determines the ob-
served displacement.
In Figure 5 we also see images of the gallbladder, and

we can see that some motion occurred. In the first im-
age the obtained velocity field is drawn, which deter-
mines the observed motion.
The figures in this subsection illustrate the results of

the proposed algorithm work for the optical flow case.
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a) b)

Figure 4. a) Image of galbladder with velocity field. b) Image of
galbladder after shift.

5.2 Non-optical Flow
The case of a non-optical flow, when the brightness

along the trajectories of the system changes, can be il-
lustrated by examples of radionuclide images.
We consider the image acquisition in the dynamic

mode. This mode allows to observe the density dis-
tribution radiopharmaceutical depending on time and
spatial coordinates in the considered organ or organ-
ism system [Kotina and Pasechnaya, 2014]. In Figure
6 we see a redistribution of the indicator (brightness)
between two frames of the hepatobiliary system. There
are pictures of a liver image with a visible redistribution
of the radiopharmaceutical and the resulting velocity
field drawn on the first image.
In Figures 7, 8 we see examples of images of the gall-

bladder. In these frames, there are both the movement
of the organ under investigation and the redistribution
of the indicator (brightness) in it, the constructed ve-
locity field reflects this.

6 Conclusion
The algorithm proposed in the article gives new pos-

sibilities for determining the velocity field, both for the
case of an optical flow and for the case of a non-optical
flow. The application of this algorithm can be useful
in various areas of image processing, motion detection
and correction, contouring and image analysis. This
approach could have particular interest and develop-
ment for the processing of radionuclide images, for ob-
taining both visual and quantitative information for the
analysis of diagnostic images. It should also be noted
that in this work we considered example of the linear

a) b)

Figure 5. a) Image of galbladder with velocity field. b) Image of
galbladder after motion occured.

approximation of the system (1). However, this ap-
proach allows us to consider any other approximations
of the system (1). In this case, the gradient over all pa-
rameters specifying the approximation can be written
out on the basis of formula (14).
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