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Abstract
Some problems on a nonius guidance, robust attitude

control and long-time image stabilization of a large
space astronomical telescope are considered. Elabo-
rated methods for dynamic research under external and
parametric disturbances, partial discrete measurement
of the state, digital control of the gyro moment clus-
ter and a fine piezo-driver with physical hysteresis, are
presented.
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1 Introduction
The USA Hubble Space Telescope (HST), today

the largest optical astronomical space telescope, has
demonstrated the breadth of fundamental astrophysics
that can be extracted from space-based observations. In
the next two decades there will be made with ever more
capable instruments and facilities. Today the Space
Telescope Science Institute (STSI) develops the Ad-
vanced Technology Large Aperture Space Telescope
(ATLAST) which is a NASA strategic mission concept
study for the next generation of space observatory (see
http://www.stsci.edu/institute/atlast). The ATLAST will
have a primary mirror diameter in the 8m to 16m range
that will allow to perform some of the most challeng-
ing observations to answer some of most compelling
astrophysical questions.
The ATLAST-8m mission concept (Postmant et al.,

2008; Hopkins et al., 2010) takes real advantage to
launch an 8-meter monolithic primary mirror telescope
to the second Sun-Earth Lagrange(L2) point in the
2020 decade. For this space observatory specific tech-
nical problems must be studied, included optical de-
sign; structural design and a vibration analysis; ther-
mal analysis; launch vehicle performance and trajec-

tory; spacecraft structure, propulsion, guidance, navi-
gation, control and power systems; mass, power and
cost budgets. The spacecraft performance capabilities
and engineering design choices are directly traceable to
science requirements:

pointing stability 1.6 10−3 arcsec;
maximum slew rate 60 degrees in 90 minutes;
maximum roll rate 30 degrees in 30 minutes;
maximum continuous inertial pointing 4500 mi-
nutes (9000 minutes goal);
momentum unloading interval 8 times in 22 days;
the Sun avoidance angle 60 degrees.

Additionally, the spacecraft (SC) employs a modular
design philosophy to enable on-orbit servicing and re-
placement of subsystems. Assuming that servicing will
occur on a regular basis, the spacecraft lifetime is 5
years with a goal of 10 years. All non-serviceable
spacecraft components have a minimum design life-
time of 20 years. The SC solar array panels (SAPs)
are sized to produce 11,160W of power, which includes
30 % margin at the end of a 10 year lifetime. Of this
power, 2000W is for heating the primary mirror via
electric heater panels to keep it at the desired 280K
operational temperature. Under normal operations,
1600W is scavenged from the instruments. The SAPs
are doubled gimballed to accommodate 240◦ slews
(with±60◦ Sun avoidance and±30◦ on roll) for main-
taining a balance on a solar pressure – principle exter-
nal disturbance in the Sun-Earth L2 point. The SAPs
are deployed on adjustable booms to provide solar pres-
sure counter to the telescope tube, this balancing sys-
tem can theoretically nullify all solar torques, provid-
ing unlimited observation times. The SAPs small an-
gular replacements may be applied for permanent un-
loading an accumulated angular momentum (AM) of a
gyro moment cluster (GMC) based on reaction wheels
(RWs) or on control moment gyros (CMGs), but more-
over large problems are arose on fine pointing stabi-



Figure 1. The scheme of the two-loop system for ultra-precise
image motion stabilization: 1 — the main mirror; 2 — the near-
focal optic compensator as the moving diagonal mirror; 3 — the fixed
diagonal mirror; 4 — the light detector; 5 — the off-set fine image
motion (position or/and velocity) sensor; 6, 9 and 10 — the micro-
processors; 7 — the fine piezo-ceramic micro-drive; 8 — the fine
sensor for the image motion compensator’s 2 angular deviations; 11
— the optic compensator as the moving secondary mirror; 12 — the
digital electro-mechanical micro-drive.

lization of the SC body into the inertial reference frame
(IRF) if only the same GMC is applied for the SC atti-
tude control.
A correct mathematical description of physical hys-

teresis is a basic problem for an internal friction theory
(Sorokin, 1960; Panovko, 1960; Pisarenko, 1970; Pal-
mov, 1976; Kochneva, 1979) and an external Coulomb
friction theory (Dahl, 1968, 1976; Karnopp, 1985;
Haessing and Friedland, 1991) with regard to the well-
known elastico-plastic micro-deformations of materi-
als. This problem is actual for electro-technique, elec-
tronics and a lot of natural science areas when there are
need the precise models for electro-magnetic, dielec-
tric and other types of physical hysteresis. The rigor-
ous mathematical aspects for qualitative properties of
general hysteresis models are represented in a num-
ber of research works (Krasnosel’skii and Pokrovskii,
1983). Presently new universal and constructible ap-
proach was elaborated for mathematical description of
physical hysteresis based on using set-valued differ-
ential equation with discontinuous right-side and on a
shape parametrization of a hysteresis relation. In this
paper, some problems on guidance, robust attitude con-
trol and image motion stabilization of a large space
astronomical telescope are considered, original nonius
(vernier) approach is suggested for obtaining high ac-
curacy of a long-time image motion stabilization by a
fine piezo-driver with physical hysteresis.

2 Nonius Guidance of a Space Telescope
Conventionally, the SC attitude control system (ACS)

have been designed in the form of a multi-functional
system of combined control. Since it is the necessary
for the closed loop to operate in the ”reference mem-
ory” mode for long periods, this is the decisive crite-

rion of efficiency. The principal meter for this loop
has been represented by a strapdown inertial naviga-
tion system (SINS). Various meters for the SC body
attitude and angular rate measurements have been ap-
plied to this loop: fine gyro and opto-electronic sen-
sors, for example, a fine fixed-head star sensors with a
wide field of view, which are intended for the correc-
tion of the gyro system. As far as ultra-precise image
motion stabilization system is concerned (Somov and
Dul’kin, 1975), the image, which is obtained with the
main mirror (1) of the telescope in the light detector (4),
has been precisely stabilized using two closed-loops,
comprising the off-set fine image motion sensor (5),
the fine sensor 8 for the image motion compensator’s
2 angular deviations and micro-processors (6), (9) and
(10). The movements of the optical compensators (the
secondary mirror (11) and near-focal diagonal mirror
(2)) is implemented by digital electro-mechanical (12)
and piezo-ceramic (7) micro-drives. In result, there is
obtained the nonius two-cascaded ACS:

I cascade — attitude guidance, navigation (by the
SINS), gyromoment control (by the GMC) and an-
gular stabilization of a space telescope body into
the IRF with accuracy 3σ ≈ 2 arcsec;
II cascade — ultra-precise stabilization of an im-
age position into the telescope focal plane with ac-
curacy 3σ ≈ 1.5 10−3 arcsec by movements of the
optical compensators on signals of the off-set fine
image motion sensor.

Suggested nonius ACS, in cooperation with the solar
pressure balancing system by the SAPs slow angular
replacements for permanent unloading an accumulated
AM of any GMC, may be applied for a long-time ultra-
precise image motion stabilization.

Figure 2. The scheme of a gyrodine



Figure 3. The scheme 3-SPE by three collinear GD’s pairs

Figure 4. The scheme of the piezo-drive

3 Executed devices and systems
Increased requirements to information satellites (life-

time up to 10 years, exactness of spatial rotation ma-
noeuvers with effective damping the SC flexible struc-
ture oscillations, robustness, fault-tolerance as well as
to reasonable mass, size and energy characteristics)
have motivated intensive development the GMCs based
on excessive number of gyrodines (GDs) — single-
gimbal control moment gyros, see Fig. 2. Collinear
pair of two GDs was named as Scissored Pair Ensem-
ble (SPE ) in well-known original work J.W. Crenshaw
(Crenshaw, 1973). Redundant scheme, based on six gy-
rodines in the form of three collinear GD’s pairs, was
named as 3-SPE. Fig. 3 presents a simplest arrange-
ment of this scheme into a canonical orthogonal gy-
roscopic basis Oxgcy

g
c z

g
c . By a slope of the GD pairs

suspension axes in this basis it is possible to change es-
sentially a form of the AM variation domain S at any
direction.

The piezo-drive have a tubular construction with
bending possibility at two orthogonal planes, see
Fig. 4: a tubular piezo-ceramic element (PCE) 1, the
elastic insulating spacers 2, a case 3 and an image
motion compensator (IMC) 4 — a flat mirror. The
PCE is freely attached to the case 3 on the borders
at two orthogonal planes by spacers 2. The IMC 4
is rigidly connected to the end of the PCE 1 so that
its reflecting plane is orthogonal to the PCE axis. The
tubular PCE have 5 electrodes: general electrode 5 at
its internal surface and 4 external electrodes 6–9 or-
dered along the PCE so that the symmetry planes of
the opposite electrodes are mutually orthogonal (So-
mov, 1974). The PCE longitudinal parts have the con-
trary directions of radial polarization under the oppo-
site electrodes. When a control voltage is appeared on
the points k1&k0 or k2&k0 then due to a reverse trans-
verse piezo-effect the PCE parts under electrodes 6&8
or respectively 7&9 are deformed in the contrary di-
rections and therefore the PCE bends are happened at
relevant planes. So, the tubular piezo-ceramic element
is equivalent to the controlled 2-DOF Hooke hinge.

4 Mathematical Models
4.1 Model of Spacecraft Attitude Motion
Let us introduce the IRF I⊕ (OXI

eY
I
eZ

I
e), standard de-

fined the body reference frame (BRF) B (Oxyz) with
origin in the SC mass center O, the optical telescope
(sensor) reference frame (SRF) S (Oxsyszs) and the
image field reference frame (FRF) F (Oix

iyizi) with
origin in center Oi of the telescope focal plane yiOiz

i.
The BRF attitude with respect to the IRF is defined
by quaternion Λb

I ≡ Λ = (λ0,λ),λ = (λ1, λ2, λ3).
Further the symbols 〈·, ·〉, ×, { · }, [ · ] for vectors and
[a×], (·)t for matrixes are conventional denotations.
The GMC’s AM vector H have the form H(β) =
hg
∑

hp(βp), there hg is constant own AM value for
each GD p= 1, . . . 6 ≡ 1 ÷ 6 with the GD’s AM unit
hp(βp) and vector-column β = {βp}. Within preces-
sion theory of the control moment gyros, for a fixed
position of the SC flexible structures with some simpli-
fying assumptions and for t ∈ Tt0 = [t0,+∞) a SC
angular motion simplest model is appeared as

Λ̇ = Λ◦ω/2; Ao {ω̇, q̈} = {Fω,Fq}, (1)

ω={ωi, i = x, y, z ≡ 1÷ 3}; q={qj , j = 1÷ nq};
Fω = Mg − ω×G + Mo

d(t,Λ,ω) + Qo(ω, q̇,q);
Fq={−((δq/π)Ωqj q̇j + (Ωqj)

2qj)+Qq
j(ω, q̇j , qj)};

Mg = −Ḣ = −hgAh(β)β̇; Ah(β) = ∂h(β)/∂β;

Ao=

[
J Dq

Dt
q I

]
;

G = Go + Dqq̇;

Go = J ω + H(β),

vector-column Mo
d(·) presents an external torque dis-

turbance, and Qo(·),Qq
j(·) are nonlinear continuous



functions. The GMC torque vector Mg = Mg(β, β̇)
is presented as follows:

Mg = −Ḣ = −hgAh(β) ug; β̇ = ug, (2)

ug={ug
p}, ug

p(t) =ag Zh[Sat(Qntr(ugpk, d
g), ūm

g ), Tu]
with constants ag, dg, ūm

g and a control period Tu =
tk+1 − tk, k ∈ N0 ≡ [0, 1, 2, ...); discrete functions
ugpk ≡ ugp(tk) are outputs of digital nonlinear con-
trol law (CL), and functions Sat(x, a) and Qntr(x, a)
are general-usage ones, while the holder model with
the period Tu is such: y(t) = Zh[xk, Tu] = xk ∀t ∈
[tk, tk+1). At given the SC body angular programmed
motion Λp(t), ωp(t), εp(t)= ω̇p(t) with respect to the
IRF I during time interval t ∈ T ≡ [ti, tf ] ⊂ Tt0 ,
tf ≡ ti + T, and for forming the vector of correspond-
ing continuous control torque Mg(β(t), β̇(t)) (2), the
vector-columns β̇ = {β̇p} and β̈ = {β̈p}, p = 1 ÷ 6,
must be component-wise module restricted:

|β̇p(t)| ≤ ūg < ūm
g , |β̈p(t)| ≤ v̄g, ∀t ∈ T, (3)

where values ūg and v̄g are constant.
Model of a space telescope takes into account (Somov,

2000): the controlled motion of the SC mass center; the
spatial angular motion of the SC as a rigid body; move-
ments of flexible SAPs and antennas; the GD move-
ments into the GMC scheme, see Fig. 3, moreover the
model of each gyrodine describes the nonlinear dynam-
ics of the gyro-rotor’s 5-DOF ball bearing suspension,
see Fig. 2, the proper gyro-rotor rotation dynamics with
regard to its static and dynamic unbalance, the flexi-
bility of gyro-shell’s ball bearings, the flexibility and
kinematic defects in the gear, the dynamics of stepping
motor and an electromagnetic damper on the gyrodine
precession axis that takes into account the dry friction
torque; the GMC fixation on the SC body by means of
a vibration-absorbing frame; external torques, includ-
ing ones by solar pressure; the flexible-viscous fixa-
tion of the optical telescope structure on the SC body
by a vibration-absorbing frame, taking into account a
nonlinear dynamics of the digital electro-mechanical
micro-drive (12) with a precision screw gear and the
fine piezo-ceramic micro-drive (7), see Fig. 4; opera-
tion of the system’s meter elements taking into account
the proper dynamics of these devices, their nonlinear-
ities, the digital forming output signals, the discrete
noise influences and a delay with respect to the main
cycle of the onboard computer operation, including that
for the fine opto-electronic image motion sensor (5) and
the fine sensor (8), see Fig. 1.

4.2 General Model of Physical Hysteresis
As well known, fundamentally two types of the

hysteresis relations are singled out in any physical
medium: with index of a limiting static loop in negative
direction (clockwise, Fig. 5 a, type A) and with index

Figure 5. The types of physical hysteresis

of this loop in positive direction (counter-clockwise,
Fig. 5 b, type B). It is very important to distinguish a
physical meaning of the arguments x and y for hystere-
sis function y = Fh(·, x). For example, elastico-plastic
micro-deformations (Palmov, 1976) in an internal fric-
tion theory under notation x = ε (mechanical defor-
mation) and y = σ (mechanical strength) are repre-
sented by the type A hysteresis relation. In an external
friction theory the elastico-plastic micro-deformations
have also such type hysteresis relation, if a variable x
is a small line or angular displacement, and a variable
y is respectively a friction force or torque, as in famous
Dahl-type solid friction model (Dahl, 1968).
Ferro-magnetic hysteresis is presented by a B-type

multi-function (see Fig. 5 b), if in the capacity of a forc-
ing variable there is assumed x = H (magnetic field
strength) and as a output variable — function y = B
(magnetic displacement). For piezo-ceramic materials
a dielectric hysteresis have also such type hysteresis re-
lation, if as a forcing function there is assumed a vari-
able x = E (electric field strength), and as a output
variable — function y = P (polarization of a segneto-
electric material).
The A-type hysteresis relation y = Fh(·, x),Fig. 5 a,

is transformed in hysteresis function y=Φh(·, x) of the
type B, see Fig. 5 b, (e.g. in the form x = Φh(·, y)) by
the ”mirror reflection” respect to an ordinate (the axis
y) with a next rotation of obtained image on the an-
gle −π/2 (90◦ clockwise), and also renaming the co-
ordinate axes as x = y and y = x. Moreover, for the
model limiting hysteresis loop the coordinates of char-
acteristic points in Fig. 5 are transformed in such ob-
vious way: B = A; A = B and r = g; s = h. This
method is well known, often is used, for example in the
internal friction theory (Kochneva, 1979), and permits
to investigate only one type of hysteresis relation, in the
capacity of which later on is assumed the type A.
Let x(t) is a real continuous and piecewise-

differetiated function for t ∈ Tt0 ≡ [t0,+∞). Let
there be the values x̌ν = x(tν) of the function in the
time moments tν , ν ∈N0≡ [0, 1, 2, · · · ), when the last
changing sign of a speed ẋ(t) (a derivative of x(t) with
respect to time t) was happened, e.g.

x̌ν≡x(tν)|tν : Signẋ(tν + 0) 6=Signẋ(tν − 0). (4)



Figure 6. The hysteresis loops by A (a) and B (b) types of the piezo-drive static characteristics with parameters m = 5.75, ah =
2000, k = 1.9 · 10−6, p = 1.075, p̃ = 5 · 10−3 and α = 1.5.

A local function x̃ν(t) on each local time semi-interval
Tν≡ [tν , tν+1) is introduced as

x̃ν(t)=x(t)− x̌ν ∀t ∈ Tν , (5)

and a nonlinear functionally-parametrized coefficient
kν ≡ kν(x(t)) ≡ kν(k, p, p̃, x̃ν) of the hysteresis func-
tion shape is defined as

kν(x(t))=k(1− (1− p)exp(−p̃|x̃ν |)), t ∈ Tν , (6)

where k, p, p̃ are constant positive parameters. For a
constant parameter αh > 0 and x0 ≡ x(t0) a normed
hysteresis function r(t)=Hst(·, x(t))

r(t) = Hst(ah, αh, kν(x(t)), ro, x(t));

r(t0)≡ro=Hst(ah, αh, kν(x0), ro, x0)
(7)

with memory and restriction on its module by a con-
stant parameter ah > 0, is defined as a right-sided so-
lution of the equations

D+r=

{
kν |r−ahSign ẋ(t)|αh ẋ(t) |r| < ah

0 |r| ≥ ah
;

r(t0 + 0) = ro.

(8)

where D+ is symbol of a right derivative with respect
to a time. The differential equation in (8) has a discon-
tinuous right side and ambiquitely depends on forcing
function x(t) and its speed ẋ(t). Finally, at initial
condition yo ≡ y0 = y(t0) for x = x0 the hysteresis
function y(t) is defined in the form

y(t)≡m Hst(ah, αh, kν , ro, x(t)); ro ≡ yo/m, (9)

with the constant positive scale coefficient m > 0.
In developed differential model (4)–(9) of physical

hysteresis the parameter p̃ determines on the whole
a degree of convergence (see Fig. 5) for a trajectory
y(t) = Fh(·, x(t)) in the plane xOy on symmetric
limiting static loop under the harmonic forcing func-
tion x(t) = A sinωt with fixed A,ω and any initial
condition yo = y0 with |yo|/m < ah. For this model
all well-known requirements are realized, including
the famous requirements on a model vibro-correctness
(Krasnosel’skii and Pokrovskii, 1983), and also on a
frequency independence and a fine return on a main
symmetric limiting hysteresis loop after a short-term
passage on a displaced local hysteresis loop (Palmov,
1976; Kochneva, 1979).

4.3 Static Model of the Piezo-drive Hysteresis
For contemporary piezo-ceramic materials their

normed hysteresis not exceeds 5% for electric field
strength |Ee| ≤ Eem = 2 KV/cm. The PCE linear
normed static characteristics is appeared as

α̃k1 ≡ αk1/kαu = uz, (10)

where

kαu ≡ −
d31lp

2
√

2 · hp rp λpt
> 0,

lp, rp and hp � rp are the PCE’s length, mean radius
and a wall thickness, the pure number

λpt =
1− 2

√
2 k231/(3π) + (hp/rp)

2 /12

1− k231
> 1,

and d31 < 0 with k231 = d231/(S
E
11ε

σ
33) < 1 are

standard notations of the piezo-ceramics’ parameters
(Smazhevskaya and Fel’dman, 1971).
At the the PCE’s wall thickness hp = 1 mm maximum

voltage umz = 200 V corresponds to maximum of elec-
tric field strength Eemz = 2 KV/cm. Fig. 6 presents
some experimental (Somov and Fadeyev, 1980) re-
sults on the normed hysteresis characteristics by type



A (uz = Fh(·, α̃k1), Fig. 6a) and by type B (α̃k1 =
Φh(·,uz), Fig. 6b) for this piezo-drive at input voltage
uz(t) = A sinωt with A = 200 V and ω = 1 rad/s.
Moreover, there were carried out a statistic data pro-
cessing and preliminary fitting the hysteresis parame-
ters m, ah, α, k, p, p̃ taking into account the condi-
tion mk paαh = 1 for initial loading. In terms of bend-
ing torques the PCE’s static hysteresis characteristic
by the A type is presented in the form

(3Epq Ip/lp) k
α
u y(t) = kkz uz(t);

y(t) = m r(t); x(t) = αk1(t)/kαu = α̃k1 ;

r(t) = Hst(ah, α, kν(x(t)), ro, x(t)),

(11)

with mandatory concordance of initial conditions
ro = Hst(ah, α, kν(x0), ro, x0),

where the constant coefficient

kkz = −
3Epq Ipd31

2
√

2 rpλ
p
thp
≡ −3(π/2)5

4
√

2

(
rp
λpt

)2
d31
SE11

,

and initial value ro = r(t0) ≡ yo/m = uz(t0)/m.

4.4 Dynamics of the Piezo-drive
If wy(t, x) is a transverse displacement any point at

the PCE’s axis, then αk1(t) = ∂wy(t, lp)/∂x and a cur-
vature κz(Ez(t), x) = ∂2wy(t, x)/∂x2 of the PCE’s
bending in linear theory is appeared as

κz(E
e
z(t), x) = −[d31/(

√
2 rp λ

p
t )] E

e
z(t), (12)

where Eez(t) = uz(t)/hp is an electric field strength.
For the PCE mass mp, m

l
p ≡mp/lp, Ip ≡ πr3php and

Epe ≡(SE11λ
p
t )

−1 the well-known wave equation
ml
p[∂

2 wy(t, x)/∂t2] + IpE
p
e [∂4 wy(t, x)/∂x4] = 0

without the PCE rotation inertia under standard bound-
ary conditions have analytic solution. By first partial
frequency Ωp1 = (π/lp)

2(IpE
p
e/m

l
p)

1/2 of own PCE
bending oscillations, the PCE have equivalent mass
mp
e = (lp/h

k
1)2mp/32, where hk1 is a distance be-

tween the IMC mass center and point O, see Fig.4.
For the IMC’s mass mk

1 and moment of inertia Jk1 ,
the ”IMC+PCE”-cluster have equivalent general mass
µk1≡Jk1 +(mk

1 +mp
e)(h

k
1)2 in point O. For notations

Epq = (π/2)4 Epe/4 and ck1 = 3Epq Ip/lp ≡ µk1(Ωk1)2

linear piezo-drive’s dynamical model has the form

Mkr
1 + µk1(α̈k1 + νk1 Ωk1α̇

k
1 + (Ωk1)2αk1) = Qk

1 ;

Qk
1 ≡ 3Epq Ip κz(E

e
z(t), lp)/2 = kkz uz(t),

(13)

where Mkr
1 (t) is an inertia torque because of a tele-

scope motion. For its fixed position Mkr
1 ≡ 0, than

taking into account the relations (10), (11), (12) and

Figure 7. The vibration amplitude of the optical image

(13), the piezo-drive’s dynamical nonlinear hysteresis
model is appeared as

µk1 [α̈k1 + νk1 Ωk1α̇
k
1 + kαu (Ωk1)2y(t)] = kkz uz(t);

y(t)=mr(t);x(t)=αk1/k
α
u ; r(t)=Hst(·, x(t)),

(14)

with concordance of initial conditions. The final para-
metric identification of the piezo-drive hysteresis is car-
ried out by careful study of its nonlinear model (14)
taking into account experimental data.

5 Vibrational Analysis of the Telescope
Some results on the vibrational analysis of the image

motion δpz (t) onto the light detector while being sub-
jected to the rotation frequency of all 6 statically unbal-
anced gyrodine’s rotors in ball bearings and without a
vibro-absorbing frame for the GMC fixation on the SC
body, are given in Fig. 7. The vibration amplitude δpz
of this image at the gyro-rotor’s nominal rotation fre-
quency ∼ 125 Hz is equal to ∼ 0.005 arcsec. The
use of the gyrorotor’s 5-DOF gas-dynamic suspension
in each gyrodine and placement of the GMC on the SC
body by a vibro-absorbing frame made it possible a vi-
bration amplitude of ∼ 0.2 10−3 arcsec to be attained
at this rotation frequency for all gyro-rotors.

6 Filtering and Robust Digital Control
As the main methods for synthesis of nonlinear con-

trol systems we use methods of Lyapunov functions
and vector Lyapunov functions (VFL) in association
with the exact feedback linearization (EFL) technique
(Somov et al., 1999). Contemporary filtering & align-
ment calibration algorithms (Somov, 2009) give finally
a fine discrete estimating the SC angular motion co-
ordinates by the quaternion Λm

s = Λs◦Λn
s , s ∈ N0,

where Λs≡Λ(ts), Λn
s is a ”noise-drift” digital quater-

nion and a measurement period Tq= ts+1 − ts ≤ Tu is
multiply with respect to a control period Tu.
In stage 1, for continuous forming the control torque

Mg(β(t), β̇(t)) (2) and the SC model as a free rigid



body the simplified controlled object is such:

Λ̇=Λ ◦ω/2; Jω̇ + [ω×]Go=Mg; β̇=ug(t). (15)

The error quaternion is E = (e0, e) = Λ̃p(t)◦Λ, Euler
parameters’ vector is E = {e0, e}, and the attitude er-
ror’s matrix is Ce ≡ C(E) = I3 − 2[e×]Qe, where
Qe ≡ Q(E) = I3e0 + [e×] with det(Qe) = e0.
If error δω ≡ ω̃ in the rate vector ω is defined as
ω̃ = ω−Ceω

p(t), and the GMC’s required control
torque vector Mg is formed as
Mg = ω×Go + J(Ceω̇

p(t)− [ω×]Ceω
p(t) + m̃),

then the simplest nonlinear model of the SC’s attitude
error is as follows:

ė0 = −〈e, ω̃〉/2; ė = Qeω̃/2; ˙̃ω = m̃. (16)

For model (16) a non-local nonlinear coordinate trans-
formation is defined and applied at analytical synthesis
by the EFL technique. This results in the nonlinear CL

m̃(E, ω̃) = −A0 e sgn(e0)−A1 ω̃, (17)

where A0 = ((2a∗0 − ω̃2/2)/e0)I3; A1 = a∗1I3 −
Reω, sgn(e0) = (1, if e0 ≥ 0) ∨ (−1, if e0 <
0), matrix Reω = 〈e, ω̃〉Qt

e[e×]/(2e0), and param-
eters a∗0,a

∗
1 are analytically calculated on spectrum

S∗
ci = −αc ± jωc. Simultaneously the VFL υ(E, ω̃)

is analytically constructed for close-loop system (16)
and (17). Into orthogonal canonical basis Oxyz, see
Fig. 3, the GD’s AM units have next projections:
x1 =C1; x2 =C2; y1 =S1; y2 =S2; x3 =S3; x4 =S4;
z3 =C3; z4 =C4; y5 =C5; y6 =C6; z5 =S5; z6 =S6,

where Sp ≡ sinβp and Cp ≡ cosβp. Than col-
umn of normed GMC’s summary AM vector h(β) =
{x, y, z} = {Σxp,Σyp,Σzp} and matrix Ah(β) =
∂h/∂β has the form

Ah(β)=

−y1 −y2 z3 z4 0 0
x1 x2 0 0 −z5 −z6
0 0 −x3 −x4 y5 y6

.
For 3-SPE scheme singular state is appeared when the
matrix Gramme G(β) = Ah(β)At

h(β) loses its full
rang, e.g. when G ≡ det G(β) = 0. At introducing
the denotations
x12 = x1 + x2; x34 = x3 + x4; y12 = y1 + y2;

y56 = y5 + y6; z34 = z3 + z4; z56 = z5 + z6;

x̃12 = x12/
√

4− y212 ; x̃34 = x34/
√

4− z234;

ỹ12 = y12/
√

4− x212 ; ỹ56 = y56/
√

4− z256;

z̃34 = z34/
√

4− x234 ; z̃56 = z56/
√

4− y256
components of the GMC explicit vector tuning law

fρ(β) ≡ {fρ1(β), fρ2(β), fρ3(β)} = 0 (18)

are applied in the form
fρ1(β) ≡ x̃12 − x̃34 + ρ (x̃12 x̃34 − 1);

fρ2(β) ≡ ỹ56 − ỹ12 + ρ (ỹ56 ỹ12 − 1);

fρ3(β) ≡ z̃34 − z̃56 + ρ (z̃34 z̃56 − 1).

The analytical proof have been elaborated that vector
tuning law (18) ensures absent of singular states by this
GMC scheme for all values of the GMC AM vector
h(t) ∈ S \ S∗, i.e. inside all its variation domain.
Discrete measured error quaternion and Euler param-

eters’ vector are Es = (e0s, es) = Λ̃p(ts)◦Λm
s and

Es = {e0s, es}, and the attitude error filtering is exe-
cuted by the relations

x̃s+1 = Ãx̃s + B̃es; e
f
s = C̃x̃s + D̃es, (19)

where matrices Ã, B̃, C̃ and D̃ have conforming di-
mensions and some general turning parameters. Atti-
tude filtered error vector ef

k is applied for forming the
digital control m̃k = uk taking into account a time
delay at incomplete measurement of state and onboard
signal processing:

vk = −(Kx
d x̂k + Ku

d uk); uk+1 = vk; (20)

x̂k+1 = Aod x̂k + Bu
od uk + Bv

od vk

+Gd(ef
k − (Cod x̂k + Du

od uk + Dv
od vk)),

where x̂k = {êk, ˆ̃ωk}, matrices have conforming di-
mensions and also general turning parameters to guar-
antee the ACS robust properties.
In stage 2, the problems of synthesising the digital

nonlinear CL were solved for model of the flexible
spacecraft (1) with incomplete discrete measurement
of state. Furthermore, the selection of parameters in
the structure of the GMC nonlinear robust CL which
optimizes the main quality criterion for given restric-
tions, including coupling and damping the SC structure
oscillations (Somov et al., 2005) is fulfilled by a para-
metric optimization and multistage numerical simula-
tion. Thereto, the VLF has the structure derived above
for the error coordinates E, ω̃ and the structure of other
VLF components in the form of sub-linear norms for
vector variables q(t), q̇(t), β̇(t) using the vector β(t).
For attitude stabilization of a space telescope body by
the ATLAST-8m class there are needed a control period
Tu = 4 s and a measurement period Tq = 1 s. As far
as the ACS II cascade is concerned, here standard dig-
ital PID-controllers are applied with a control period
Tu = 0.125 s and a measurement & filtering period
Tq = Tu/4.

7 Computer Simulation
Suggested two-cascaded nonius control system was

simulated with approximate data for a space telescope
by the ATLAST-8m class. Most interest results are pre-
sented in Fig. 8 — angular velocity error δ̇pz (t) in the



Figure 8. Angular velocity error on the light detector when operat-
ing the image-motion stabilization system

light detector of the telescope for time interval of a
steady-state mode with operating II cascade. Here the
mean-square error σ = 0.4567 10−3 arcsec/sec was
obtained for the angular velocity error δ̇pz (t) ∀t ∈
[84, 100] s.

8 Conclusion
Some problems on a guidance, robust attitude con-

trol and long-time image motion stabilization of a large
space astronomical telescope by the ATLAST-8m class
were considered.
Two-cascaded nonius control system was suggested

which in cooperation with the solar pressure balanc-
ing system by the SAPs slow angular replacements for
permanent unloading an accumulated AM of the GMC
may be applied for a long-time ultra-precise image mo-
tion stabilization.
Elaborated methods for dynamic research at external

and parametric disturbances, partial discrete measure-
ment of the state, digital control of the gyro moment
cluster and a fine piezo-driver, and also some results of
computer simulation, were presented.
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