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Abstract
An optimal stabilization problem of a body in the

electromagnetic suspension is studied. For the lin-
earized system we synthesize the time-invariant output-
feedback controller based on the measurement of the
current in the solenoid circuit without measuring the
position and velocity of the body. A generalized H∞-
norm of the linearized system is used as the optimality
criterion. It characterizes the disturbance attenuation
level for both exogenous signals and an uncertain ini-
tial state. The controller parameters are computed us-
ing linear matrix inequalities (LMIs). Numerical simu-
lation carried out for the nonlinear mathematical model
of the magnetic suspension system demonstrates some
advantages of the generalized H∞ controller over stan-
dard ones.
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1 Introduction
The classical scheme of electromagnetic suspension

presupposes the presence of a levitated body position
sensor as a main element when forming feedback in
the control loop [Schweitzer, 2009]. Improving the
electromagnetic suspension design led to the idea of
implementing levitation based only on measuring the
current in the electromagnet circuit without measuring
the position and velocity of the body, so-called sensor-
less suspension [Mukhopadhyay, 2005; Gruber et al.,
2013]. The advantages of this implementation are pro-
vided by the greater compactness and reliability of the
design and its lower cost compared with the traditional
scheme. Usually there are two main approaches to ex-
clude a displacement sensor. The first of them condi-

tionally called algorithmic uses an observer which esti-
mates the position and velocity of the body in real-time.
The second one uses an additional high-frequency sig-
nal which allows to estimate the electric circuit param-
eters and calculate the position of the body [Gluck et
al., 2010]. This paper is closely related to the first ap-
proach.
Optimal stabilization of the body in an electromag-

netic suspension with various transient specifications
was considered in recent papers [Kumar and Jerome,
2013; Yang Yifei and Zhu Huangqiu, 2013; Hutterer
et al., 2014]. H∞ and H2 optimal output-feedback
controllers were synthesized in [Davoodi, Sedgh and
Amirifar, 2008]. An advantage of the H∞ optimal con-
trol is the best disturbance attenuation of external de-
terministic signals with a bounded L2-norm, whereas
the H2 optimal control provides the best transient pro-
cesses for impulsive or random external signals. It
would be desirable to combine these performance in-
dices when synthesizing the control of a body in an
electromagnetic suspension. Such an approach is used
in this paper, where the performance measure of tran-
sient processes is the generalized H∞ norm of the sys-
tem which takes into account both exogenous distur-
bances and uncertain initial conditions [Khargonekar,
Nagpal and Poolla, 1991; Balandin and Kogan, 2010].
LMI-based technique is used for synthesizing the feed-
back controller [Boyd et al., 1994; Gahinet and Apkar-
ian, 1994; Iwasaki and Skelton, 1994].

2 Magnetic Suspension System
A schematic representation of the magnetic suspen-

sion system is given in Figure 1. It consists of a sin-
gle electromagnet and the ferromagnetic object of mass
m. By controlling the electric voltage U in the coil of
the electromagnet, the magnetic field can be regulated
such a way that the object will levitate in an equilib-
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rium state when the electromagnetic force will be equal
to the weight of the object. The dynamics of the sim-
plest magnetic suspension system is described by the
two equations:

ms̈ = F −mg,

Ψ̇ +RI = U.
(1)

The first equation expresses Newton’s law and deter-
mines the change of the body’s coordinate s due to
the gravity force mg and the electromagnetic force F .
The second equation represents Kirchhoff’s law for the
electric circuit of the electromagnet, where I is the cur-
rent in the electromagnet coil, R is the coil’s resistance,
and Ψ is the flux linkage of the coil. If Φ is the mag-
netic flux passing through one turn, and n is the number
of turns in the coil, then Ψ = nΦ.

Figure 1. Schematic diagram of the magnetic suspension system.

The flux linkage Ψ and current I are determined by

Ψ = L(s)I, L(s) =
CL

δ − s
, CL =

µ0n
2A

2
, (2)

where L(s) is the inductance of the electromagnet, CL

is a parameter and δ is the nominal gap between the
electromagnet and the levitated body. If we denote the
nominal inductance as L0 = L(0), then CL = L0δ,
and

L(y) =
L0

1− s/δ
. (3)

The magnetic force F can be written using the mag-
netic energy W as

F =
∂W

∂s
=

CLI
2

2(δ − s)2
, W =

L(s)I2

2
. (4)

Now substituting the expressions (2) and (4) into (1),
we get the final nonlinear motion equation:

ms̈ =
CLI

2

2(δ − s)2
−mg,

CL

δ − s

dI

dt
+

CL

(δ − s)2
Iṡ+RI = U.

(5)

When U = U0 = R
√

2δ2mg/CL the system (5) has
a single equilibrium point s = 0, I = I0 = U0/R,
which is unstable. Denote

I = I0 + Iv, U = U0 + Uv, (6)

where Iv and Uv are time varying parts of I and U ,
respectively. The linearized equations of (5) are of the
form

ms̈ = css+ hiIv,

L0
dIv
dt

+ hiṡ+RIv = Uv,
(7)

where

cs =
CL

δ3
I20 =

L0

δ2
I20 , hi =

CL

δ2
I0 =

L0

δ
I0. (8)

We make the change of variables

t = Tt′, s = δx1, Iv = I0x3, T =
√

m/cs (9)

to reduce the linearized system to the following dimen-
sionless form omitting the prime symbol

ẋ1 = x2,

ẋ2 = x1 + x3 + w1,

ẋ3 = −x2 − ax3 + u+ w2,

(10)

where

a =
RT

L0
, u =

UvT

L0I0
. (11)

It should be noted that the physical meaning of the pa-
rameter a is the ratio of the characteristic time T of the
“mechanical” part to the characteristic time L0/R of
the “electrical” part of the system. Typical values of
the parameter are a = 5 ÷ 10. The exogenous distur-
bances w1 and w2 stand instead of nonlinear terms in
the system model. The state of a system (10) is often
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not available for a measurement. Further, we will as-
sume that the current in the solenoid circuit is available
for measurement only, i.e.

y = x3 + w3, (12)

where w3 is the output measurement error.

3 Problem Formulation
Rewrite the system (10), (12) as follows

ẋ = Ax+B1w +B2u, x(0) = x0,

y = C2x+D2w,
(13)

where x = (x1, x2, x3) ∈ R3 is the state of the
system, y ∈ Rny is the measurable output, w =
(w1, w2, w3) ∈ Rnv is the exogenous input, and u ∈
R1 is the control input. It is assumed that the exoge-
nous disturbance w(t) ∈ L2[0,+∞) and that the plant
initial state x0 is unknown. If the current in the coil of
the electromagnet can be measured, then ny = 1 and
the matrices in (13) have the following form

A =

0 1 0
1 0 1
0 −1 −a

 , B1 =

0 0 0
1 0 0
0 1 0

 , B2 =

0
0
1

 ,

C2 =
(
0 0 1

)
, D2 =

(
0 0 1

)
.

Consider the controlled output z ∈ Rnz to describe
transient processes occurring in the system:

z = C1x+D1u, (14)

where

C1 =


1 0 0
0 1 0
0 0 1
0 0 0

 , D1 =


0
0
0
1

 .

Therefore the square of the L2-norm of the controlled
output is a quadratic cost of the state components and
control

∥z∥2 =

∞∫
0

(
x2
1 + x2

2 + x2
3 + u2

)
dt.

Now suppose that the initial state of the system (13),
(14) is zero. To evaluate the response of the object

to the disturbance w, we define the worst case perfor-
mance measure J1 by the formula:

J1(u) = sup
w ̸=0

∥z∥
∥w∥

. (15)

Note that for a fixed control law u this cost coincides
with H∞-norm of the system (13), (14).
However, there exist situations when exogenous dis-

turbance does not act to the system and its initial state
is possibly nonzero and unknown. The nonzero initial
state causes an additional unknown so-called initial dis-
turbance. Define the worst case performance measure
J2 as follows [Balandin and Kogan, 2008, 2009]:

J2(u) = sup
x0 ̸=0

∥z∥
|x0|

. (16)

Finally, if both types of the disturbances act to the sys-
tem (13), (14), we define the performance measure as
the worst-case norm of the controlled output over all
admissible exogenous disturbances and initial states:

J(u) = sup
∥w∥2+ρ2|x0|2 ̸=0

∥z∥√
∥w∥2 + ρ2|x0|2

, (17)

where ρ > 0 is a given weighting coefficient [Balandin
and Kogan, 2010]. Obviously, when x0 = 0 the cost
J is reduced to the cost (15), and for w = 0 we obtain
J = J2(u)/ρ. In addition, the following properties
were proved in [Balandin and Kogan, 2010]:

lim
ρ→0

ρ J(u) = J2(u), lim
ρ→∞

J(u) = J1(u).

Therefore, the parameter ρ is a measure of the impor-
tance of the unknown initial conditions x0 over exoge-
nous disturbance w. For this reason the cost (17) is
a trade-off between performance measures J1 and J2
[Khargonekar, Nagpal and Poolla, 1991; Balandin and
Kogan, 2010].
Now we are ready to formulate two control prob-

lems associated with the cost (17). The first is a state-
feedback problem.
Problem 1. For the system (13), (14), find a stabilizing

state-feedback control law

u = Θx, Θ =
(
θ1 θ2 θ3

)
, (18)

minimizing the cost (17). If the initial state of the ob-
ject is zero, then the formulated problem is the H∞-
optimal control problem. In the opposite case, when
an external disturbance w does not act on the object,
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the problem is equivalent to finding the minimal γ0 for
which the following inequality holds:

inf
u

∥z∥2 = inf
u

∞∫
0

(
x⊤C⊤

1 C1x+ u⊤D⊤
1 D1u

)
≤

≤ γ2
0ρ

2|x0|2, ∀x0 ̸= 0.

This minimization problem is the classical linear-
quadratic control problem. It is known that its optimal
value depends on the initial conditions x0 and is written
as x⊤

0 Xx0, where the matrix X is a stabilizing solution
of the Riccati equation

A⊤X +XA−XB2B
⊤
2 X + C⊤

1 C1 = 0.

At the same time, the value of the cost J2 does not de-
pend on x0, i.e.

x⊤
0 Xx0

|x0|2
6 γ2

0ρ
2, ∀x0 ̸= 0.

Such a reformulation of the linear-quadratic control
problem in terms of the attenuation level of the ini-
tial disturbances is important in the case of the output-
feedback controller design.
Problem 2. For the system (13), (14), find a stabiliz-

ing full order dynamic output-feedback controller de-
scribed by the equations

ẋr = Arxr +Bry, xr(0) = 0,

u = Crxr +Dry.
(19)

The generalized H∞-suboptimal controller is defined
by inequality J(u) < γ for a given γ > 0. Respec-
tively we say that the control law u∗ is the generalized
H∞-optimal if

u∗ = arg inf
u

J(u), γ∗ = J(u∗).

Similarly, using the attenuation level of the initial dis-
turbances J2(u) and the attenuation level of the ex-
ogenous disturbances J1(u), we define γ0- and H∞-
suboptimal controllers.

4 Control System Design
In this section, we present some results which will be

applied for solving the problems indicated in the pre-
vious section. More details can be found in [Balandin
and Kogan, 2010].
Consider the linear system defined by (13), (14). The

design of linear state-feedback control law of the form
(18), such that the value J(u) of the closed-loop system
is less than a given γ > 0, is based on the theorem.

Theorem 1 ([Balandin and Kogan, 2010]). The gen-
eralized H∞ state-feedback controller exists for a
given γ if and only if the LMIs

Y A⊤ +AY +B2Z + Z⊤B⊤
2 ⋆ ⋆

B⊤
1 −γ2I ⋆

C1Y +D1Z 0 −I

 < 0,

(20a)[
Y ⋆
I γ2ρ2I

]
> 0 (20b)

are feasible for (nu × nx)-matrix Z, and a symmetric
positive definite (nx×nx)-matrix Y . When such a pair
of matrices Z and Y are found, a gain matrix Θ can be
computed as Θ = ZY −1.

Note that the optimal value of the cost (17) can be
found as a minimal value of γ for which LMIs (20)
are feasible in variables Z, Y = Y ⊤ > 0, and γ2 >
0. This may be done using standard LMI solvers in
Matlab.
Also note that H∞-optimal state-feedback controller

is computed as solution of (20a), while γ0-optimal
state-feedback controller is found as solution of (20a)
where the second row and column are deleted, and
(20b) with ρ = 1.
Now we turn to design the optimal output-feedback

dynamic controller of the form (19). The necessary and
sufficient conditions for solvability of the generalized
H∞ problem are given by following theorem.

Theorem 2 ([Balandin and Kogan, 2010]). The full
order generalized H∞ output-feedback controller ex-
ists for a given γ > 0 if and only if the LMIs

M⊤
1


A⊤X11 +X11A ⋆ ⋆

B⊤
1 X11 −γ2I ⋆

C1 0 −I

M1 < 0,

(21a)

M⊤
2


Y11A

⊤ +AY11 ⋆ ⋆

C1Y11 −I ⋆

B⊤
1 0 −γ2I

M2 < 0,

(21b)[
X11 I

I Y11

]
≥ 0, (21c)

X11 < γ2ρ2I (21d)

are feasible in (nx × nx)-matrices X11 = X⊤
11 > 0

and Y11 = Y ⊤
11 > 0, where

M1 =

[
N1 0

0 I

]
, M2 =

[
N2 0

0 I

]
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and the columns of the matrices N1 and N2 form bases
of kernels of matrices (C2 D2) and (B⊤

2 D⊤
1 ), respec-

tively.

In order to synthesize the controller we use the
technique described in [Gahinet and Apkarian, 1994;
Iwasaki and Skelton, 1994; Balandin and Kogan,
2010]. Suppose that we have solved LMIs (21) for X11

and Y11. Define a positive definite matrix

X =

[
X11 X12

X⊤
12 X22

]
,

where the blocks X12 and X22 can be chosen, for ex-
ample, as X12 = X22 = X11 − Y −1

11 . After that we
collect all controller parameters into the single matrix
variable

Θ =

[
Ar Br

Cr Dr

]

and introduce the matrices

Ψ =

A
⊤
0 X +XA0 XB0 C⊤

0

B⊤
0 X −γ2I 0

C0 0 −I

 ,

P =
[
C D2 0

]
, Q =

[
B⊤X 0 D⊤

1

]
,

where

A0 =

[
A 0

0 0

]
, B0 =

[
B1

0

]
, C0 =

[
C1 0

]
,

B =

[
0 B2

I 0

]
, C =

[
0 I

C2 0

]
,

D1 =
[
0 D1

]
, D2 =

[
0

D2

]
.

Then the required controller can be found as a solution
Θ of the LMI

Ψ+ P⊤Θ⊤Q+Q⊤ΘP < 0. (22)

Note that H∞ output-feedback controller can be com-
puted as solution of (21a) – (21c), while γ0 output-
feedback controller is found as solution of the linear
matrix inequalities

[
N1 0

0 I

]⊤ [
A⊤X11 +X11A ⋆

C1 −γ2I

][
N1 0

0 I

]
< 0,

(23a)

N⊤
2

[
Y11A

⊤ +AY11 ⋆

C1Y11 −γ2I

]
N2 < 0, (23b)

and (21c), (21d) where ρ = 1. The columns of the
matrix N1 forms bases of the kernel of the matrix C2.

5 Simulation Results
We present the results of numerical solution of prob-

lems 1 and 2. Using the variables (9), we transform the
original nonlinear object (5) to the dimensionless form

ẋ1 = x2,

ẋ2 =
1

2

[
(1 + x3)

2

(1− x1)2
− 1

]
,

ẋ3 = −1 + x3

1− x1
x2 − a(1− x1)x3 + (1− x1)u,

(24)

where a and u are defined by (11). Then we substitute
the found optimal controllers to the nonlinear system
(5). In numerical simulation the parameter a is fixed
and equal to 7.5.
Firstly, we consider the solution of the problem 1. To

find the optimal feedback gain matrix, we set ρ2 = 0.05
and apply Theorem 1:

1. Θ∞ =
(
− 585.3589 − 552.2473 − 64.9617

)
;

2. Θ0 =
(
− 17.0923 − 16.1215 − 1.9601

)
;

3. Θ∞,0 =
(
− 21.3529 − 20.1411 − 2.4324

)
.

Here Θ∞ is H∞-controller gain, Θ0 is γ0-controller
gain, and Θ∞,0 is the generalized H∞-controller gain.
It is seen from the given data that the feedback coeffi-
cients for the H∞-controller are substantially greater
then those of the γ0-controller. The plots of tran-
sient processes in the nonlinear closed-loop system are
shown in Figs. 2 and 3. It can be seen that the H∞-
optimal controller attenuates initial disturbances much
worse than other controllers. This is expected, since
the H∞-optimal controller is designed to attenuate only
external disturbances. At the same time, the gener-
alized H∞-optimal controller (solid line) provides a
trade-off between the H∞-optimal and γ0-optimal con-
trollers.
Now we consider the output-feedback optimal con-

trol. We assume that only the current in the coil of the
electromagnet is measured. In this case, the output-
feedback controller is described by (19) and defined
by 16 parameters, unlike the state-feedback controller
depending on three parameters. Using the technique
described in the previous section, we obtained the fol-
lowing output-feedback gain-matrix for the generalized
H∞-optimal controller:

Θ∞,0 =

(
Ar Br

Cr Dr

)
=
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Figure 2. Time-history of position of the body when using a
state-feedback γ0-controller, H∞-controller, and generalized H∞-
controller.

Figure 3. Time-history of current in the coil when using a
state-feedback γ0-controller, H∞-controller, and generalized H∞-
controller.

=


−1.437 −0.355 51.027 51.222
−0.386 −1.307 49.626 48.814
−17.026 −17.058 −107.690 −98.242
17.365 16.378 93.639 91.644

 .

The plots of transient processes in the nonlinear closed-
loop system are shown in Figs. 4 and 5. The initial state
is chosen as

(
− 0.067, 0.0, 0.0

)
. It can be seen from

Fig. 5 that the H∞-optimal controller leads to rather in-
tensive oscillatory processes, whereas the generalized
H∞-optimal regulator provides a very good quality of
the transient process. Moreover, the Figs. 4 also show
some advantage of the generalized H∞-optimal con-
troller over γ0-optimal one.
The quality of the transient processes provided by

each controller can be estimated by the ratio η =
|Re(λ)|max/|Re(λ)|min. The smaller this ratio the bet-
ter the quality of the transients is achieved. For the gen-
eralized H∞-optimal regulator, we have η∞,0 = 14.3,
for γ0-optimal controller is η0 = 93.4, and for H∞-
optimal regulator is η∞ = 166.4.

6 Conclusion
We have applied a concept of the generalized H∞

control to synthesize a sensorless magnetic suspension
system. The approach is based on the generalized H∞-
norm of the linear system and its LMI characterization.
The results of numerical simulation have showed the
advantages of the generalized H∞ controller over the
classical H∞ and H2 optimal controllers.

Figure 4. Time-history of position of the body when using a
output-feedback γ0-controller, H∞-controller, and generalized H∞-
controller.

Figure 5. Time-history of current in the coil when using a
output-feedback γ0-controller, H∞-controller, and generalized H∞-
controller.
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