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Abstract
The concept of vibrational mechanics was pio-

neered in the works by Professor I.I. Blekhman
and developed by his numerous disciples and
coleagues. It is a powerful tool for the study of
such systems with fast excitations, in which slow
motion is of primary interest. One important ap-
plication of this approach is the stochastic reso-
nance, the phenomenon of resonance-like response
of slow variables to intensity of stochastic excita-
tion. This phenomenon is considered within the
framework of vibrational mechanics as forced low-
frequency oscillations near the natural frequency,
which evolves under the influence of changing
high-frequency stochastic excitation. We propose
a generalization of this approach to the case when
the evolution of low-frequency properties of the
system leads not to the equality of the natural
frequency and the frequency of the external slow
force, but to the loss of stability in a certain inter-
val of the stochastic excitation intensity. Since in
this case, as for stochastic resonance, the external
manifestation of the process is the resonance-like
response of the system, the considered effect can
be called stochastic quasi-resonance, As an exam-
ple, we consider a rotor with anisotropy of bending
stiffness under the action of stochastic angular ve-
locity oscillations.
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1 Introduction
The scientific heritage of Professor I.I. Blekhman

is outstanding not only for the richness, variety and

scientific significance of his results, but also for
the fruitful ideas that he generously shared with
his disciples and colleagues, giving origin to new
promising scientific directions.
One of his most important fundamental ideas, the
concept of vibrational mechanics, became the basis
not simply of a new direction, but in fact of a new
branch of mechanics [Blekhman, 2000; Blekhman,
2004; Blekhman, 2012]. The essence of vibrational
mechanics consists in the replacement of the initial
system with high-frequency actions by some equiv-
alent slow system, in which the influence of the
discarded fast motions on the averaged motion is
considered by introducing additional so called vi-
brational forces. This approach makes especially
efficient and transparent the investigation of such
systems with high-frequency influences, in which
slow motions are of primary interest.
The vibrational mechanics approach has in turn in-
fluenced the development of the theory of stochas-
tic resonance, a phenomenon of the resonance-like
response of slow variables to the intensity of high-
frequency stochastic excitation. This phenomenon
was first described in [Benzi et al., 1981] and at first
was considered as purely probabilistic, but gradu-
ally the connection between stochastic and vibra-
tional resonance [Landa and McClintock, 2000] be-
came clear.
After the pioneering work [Blekhman and Landa,
2004] a new paradigm in the interpretation of
this phenomenon within vibrational mechanics be-
gan to develop [Blekhman and Sorokin, 2019;
Blekhman and Kremer, 2019; Kremer, 2018;
Sorokin, 2020; E.Kremer, 2021]. It is based on
the fact that there is a low-frequency excitation in
the system along with a high-frequency excitation.
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Since high-frequency excitations modify the low
natural frequency of the system, a low-frequency
resonance occurs at a certain level of their inten-
sity.
In this paper, this concept is generalized to the
case when modification of low-frequency prop-
erties of the system under the action of high-
frequency excitation leads not to resonance rela-
tions but to the loss of stability in the averaged sys-
tem, which also causes a resonance-like response
of the system. We call this effect stochastic quasi-
resonance and consider it here on the example of a
double-bending rotor with a single disk and high-
frequency stochastic angular velocity oscillations.

2 Rotor with double bending stiffness under
stochastic excitation

We consider the rotor shown in Fig.1 with one
disk of mass M mounted symmetrically and hori-
zontally (g is acceleration of gravity) on two rigid
bearing supports and having different bending
stiffnesses c1 and c2 in the two principal directions
η1 , ς1 of the rotating coordinate system.

Figure 1. Rotor with double bending stiffness

In the absence of stochastic excitation this clas-
sical system is described, for example, in [Kellen-
berger, 1958]. Here, we will consider this rotor un-
der stochastic oscillations of its angular velocity.

2.1 Stochastic kinematic excitation of the rotor
The position angle ϕ of the rotating coordinate

system η , ς with respect to the stationary coordi-
nate system y,z varies according to the equation

ϕ̇ =ω0 (1 + ξ) , (1)

where ω0 is the mean angular velocity of the ro-
tor, ξ is the relative dimensionless stochastic com-
ponent of the angular velocity depending on the
dimensionless fast time θ = ω0t/ε, which differs
from the slow time τ =ω0t by a factor 1/ε , where ε
is some small parametre.This means that the typi-
cal frequency in the stochastic excitation spectrum

ω0/ε is large compared to the rotor mean angular
velocity ω0. It is assumed that the stochastic pro-
cess ξ has a canonical expansion [E.Kremer, 2021]

ξ=
∫ ∞

0
(ξs (k)sinkθ +ξc (k)coskθ )dk (2)

where ξs (k) and ξc (k) are mutually independent
and stochastically orthogonal random functions,
namely, they have the following properties:

E (ξs (k))=E (ξc (k))=E (ξs (k)ξc (k))= 0 ,

E
(
ξs (ki)ξs

(
kj

))
=E

(
ξc (ki)ξc

(
kj

))
=S(ki)δ(ki − kj )

(3)
Here the symbol E denotes the mathematical ex-

pectation, δ(k) is the δ-function and S(k) is the
spectral density of the process, which is a specified
deterministic function. It is also assumed that the
spectral density decreases at k → 0 fast enough to
ensure convergence of the integral

κ=
∫ ∞

0
S (k)k−2dk (4)

As it is shown in the paper [Kremer, 2018], the
value κ is determinative for formulation of the
equation of slow motions in vibrational mechanics
with stochastic excitations. For further consider-
ation, it is convenient to introduce the designation
ξ1 = ξ , and also to denote the corresponding quan-
tity κ as κ1. This is related to the fact that in formu-
lating the equations we also need the quantity ξ2

related to the centripetal acceleration. This quan-
tity can be represented as ξ2 =

〈
ξ2

〉
+ ξ2 , where

is denoted ξ2 = ξ2 −
〈
ξ2

〉
. The stochastic process ξ2

has the same properties Eq.(3) as the process ξ1 but
has a different spectral density, for which the value
κ calculated by Eq.(4) is denoted by κ2.
Now, we proceed directly to the equations of mo-
tion for the rotor

2.2 Equations of motion for the rotor
The position of the centre of the disk u, v in the

moving coordinate system η,ς is described by the
equations (without damping)

M
(
ü−2ωv̇−ω2u

)
+c1u = −Mgsinϕ

M
(
v̈+2ωu̇−ω2v

)
+c2v = −Mgcosϕ

(5)

Eqs. (5) and (1) represent a fifth-order system,
which can be reduced to the form

ẋi = Fi +
m∑
j=1

Bijξj , (6)
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proposed in [E.Kremer, 2021] as a standard one for
deriving the equations of slow motions for a system
of order n with m independent stochastic processes
ξj in the excitation. Here Fi and Bij are functions
of xs(s = 1..n) which do not depend explicitly on
high-frequency excitations. In the problem under
consideration, n=5, m=2, and the variables xi can
be introduced, for example, as follows:

x1 =
ω2

0u
′

g
, x2 =

ω2
0v
′

g
, x3 =

ω2
0u

g
,x4 =

ω2
0v

g
, x5 = ϕ

(7)
Here the dash denotes differentiation by dimen-

sionless time τ =ω0t. The introduction of variables
by Eq. (7) results in dimensionless parameters

λ1 =
√

c1

Mω2
0

, λ2 =
√

c2

Mω2
0

(8)

The functions Fi and Bij are

F1 = 2x2 +
(
1−λ2

1 +
〈
ξ2

〉)
x3 − sinx5 ,

F2 = −2x1 +
(
1−λ2

2 +
〈
ξ2

〉)
x3 − cosx5 ,

F3 = x1, F4 = x2, F5 = 1; B11 = 2x2 + 2x3,
B12 = x3,B21 = −2x1 + 2x4,B22 = x4

B31 = B41 = B32 = B42 = B52 = 0, B51 = 1

(9)

2.3 Equations for slow motion of the rotor
In the paper [E.Kremer, 2021] within the frame-

work of vibrational mechanics, the equations of
slow motions for the general case of stochastic exci-
tation of the form (6) were derived. We concretize
this result for the considered case of a fifth-order
system with two stochastic processes ξ1 and ξ1.
Here, the slow motion equations take the form

X ′i = Fi+ε
2 (κ1Vi1 +κ2Vi2) , i= 1..5 (10)

with Xi = 〈xi〉 , Fi = Fi(X1, ..X5) , and the functions
Vij (j=1,2) are calculated by the formula which for
linear equations is of the form

Vij =
5∑
k=1

∂Bij
∂Xk

Bkj − 5∑
s=1

∂Fk
∂Xs

Bsj

 (11)

where denoted Bi = Bi(X1, ..X5) .
Considering formulas (9) and introducing new
slow variables X,Y and parameters γ, σ, ν and β by
formulas

X = X3, Y = X4,

γ = 4ε2κ1 , σ =
〈
ξ2

〉
− 4ε2κ2,

ν = λ2
1 − 1, β =

λ2
2 − 1

λ2
1 − 1

(12)

we obtain the equations of slow motion in the fol-
lowing compact form

X”− (2 +γ)Y ′ +γX ′ + (ν −γ − σ )X −γY= −sinτ

Y ” +γY ′ + (2 +γ)X ′ +γX + (νβ −γ − σ )Y= −cosτ
(13)

3 Stability analysis and stochastic quasi-resonance
Slow motions in the rotating coordinate system

according to equations (13) consist of forced oscil-
lations under the action of gravity with a dimen-
sionless frequency 1 and of free oscillations de-
termined by the homogeneous part of the system.
Further, we investigate the conditions under which
free vibrations are damped, i.e. we analyze the sta-
bility of the system as a function of the intensity of
the stochastic excitation

3.1 Domains of stability
We will consider the case where the system is sta-

ble in the absence of stochastic excitation. For this,
the angular velocity must lie outside the interval
between the partial frequencies of the rotor, i.e. the
difference of λ1 and λ2 from 1 must have the same
signs. According to Eq.(12), this is ensured by the
condition β ≥ 0. The pre-critical rotational speed
corresponds to ν ≥ 0 , and the supercritical one to
ν ≤ 0 . We will analyze the stability in the plane
of parameters p = γ/ |ν| and q = σ/ |ν|. Note that ac-
cording to Eq.(12) only the case p ≥ 0 has a physical
sense.
The characteristic equation of the system is

a0s
4 + a1s

3 + a2s
2 + a3s+ a4 = 0 (14)

with the coefficients a0 = 1, a1 = 2γ, a2 = 2γ2+2γ+
4+ν (1 + β)−2σ, a3 = γ(ν (1 + β)+2(2− σ ) and a4 =
(γ + σ )2 − (γ + σ ) (1 + β)ν + ν2β +γ2 .
It is easy to show that for small ν all the inequalities
of the Routh- Hurwitz criterion are automatically
fulfilled, with the exception of the condition a4 ≥ 0,
which defines the stability boundaries in the region
of parameters p and q.

These boundaries are depicted for the cases ν ≥ 0
andν ≤ 0 in Fig. 2 and Fig. 3 (regions of instability
are hatched) and for various values of β.

3.2 Stochastic quasi-resonance
We will consider the evolution of the system with

increasing stochastic excitation using the diagram
in Fig.2 (pre-critical rotation speed). In the ab-
sence of excitation (p=q=0), the system is stable.
Increasing excitation means increasing p and q
along some curve in the plane of these parame-
ters. Whatever this curve is, the system inevitably
enters the region of instability, and with further
increase in excitation inevitably leaves it. Thus,
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Figure 2. Areas of rotor instability in the stochastic excitation param-
eter plane (p,q) for a supracritical rotor speed (ν ≥ 0)

Figure 3. Areas of rotor instability in the stochastic excitation param-
eter plane (p,q) for a supracritical rotor speed (ν ≤ 0)

there is a resonance-like response of slow motions
to the intensity of the stochastic excitations. We
call it stochastic quasi-resonance, emphasising that
the nature of this phenomenon is different from
the usual resonance. For the supercritical situation
(Fig.3), a stochastic quasi-resonance is in principle
also possible, since negative values of q are avail-
able, but in this case it is realized only under cer-
tain special scenarios of increasing stochastic exci-
tation and, in contrast to the pre-critical case, it is
not inevitable.

4 Conclusion
On the example of an anisotropic rotor with

high-frequency stochastic angular velocity oscil-
lations, the possibility of a peculiar phenomenon
resembling stochastic resonance is shown. This
phenomenon can be called a stochastic quasi-
resonance, because in contrast to the stochastic res-
onance its origin is not resonance-frequency rela-
tions, but the passage of instability region for slow
motion . Note that stochastic quasi-resonance, un-
like stochastic resonance, does not require low-
frequency excitation
In the future it is of interest to consider the phe-

nomenon of quasi-resonance in a more general for-
mulation and to identify its further applications

Acknowledgements
The idea for this study as for many other papers

by the author could hardly have originated without
the enormous influence of the communication and
joint work he had with Professor I. I. Blekhman.
This article is dedicated to his blessed memory.

References
Benzi, R., Sutera, A., and Vulpiani, A. (1981).

The mechanism of stochastic resonance. Journal
of Physics A: Mathematical and General, 14 (11),
pp. L453–L457.

Blekhman, I. (2000). Vibrational Mechanics: Non-
linear Dynamic Effects, General Approach, Applica-
tions. World Scientific, Singapore.

Blekhman, I. (2004). Selected Topics in Vibrational
Mechanics -. World Scientific, Singapur.

Blekhman, I. (2012). Oscillatory strobodynamics —
a new area in nonlinear oscillations theory, non-
linear dynamics and cybernetical physics. Cyber-
netics and Physics, 1 (1), pp. 5–10.

Blekhman, I. and Kremer, E. (2019). Stochastic
resonance as the averaged response to random
broadband excitation and its possible applica-
tions. Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineer-
ing Science, 233 (23-24), pp. 7476–7488.

Blekhman, I. and Landa, P. (2004). Conjugate reso-
nances and bifurcations in nonlinear systems un-
der biharmonical excitation. International Journal
of Non-Linear Mechanics, 39 (3), pp. 421–426.

Blekhman, I. and Sorokin, V. (2019). On the
stochastic resonance phenomenon in parametri-
cally excited systems. European Journal of Applied
Mathematics, 30 (5), pp. 986–1003.

E.Kremer (2021). The effect of high-frequency
stochastic actions on the low-frequency be-
haviour of dynamic systems. Phil. Trans. R. Soc.
A., 379 (2192), pp. 2020–0242.

Kellenberger, W. (1958). Biegeschwingungen einer
unrunden, rotierenden welle in horizontaler lage.
Ingenieur-Archiv, 26 (4), pp. 1432–0681.

Kremer, E. (2018). Low-frequency dynamics of sys-
tems with modulated high-frequency stochastic
excitation. Journal of Sound and Vibration, 437,
pp. 422–436.

Landa, P. S. and McClintock, P. V. E. (2000). Vibra-
tional resonance. Journal of Physics A: Mathemati-
cal and General, 33 (45), pp. L433–L438.

Sorokin, V. (2020). Vibrations of a nonlinear
stochastic system with a varying mass under near
resonant excitation. Journal of Vibration and Con-
trol, 26 (17-18), pp. 1435–1444.


