
1

An Approach to a Digital Adaptive Controller for
guidance of Unmanned Vehicles - Comparison
with Digitally-Translated Analog Counterparts

Mario A. Jordán, and Jorge L. Bustamante

Abstract– This paper deals with the design of a dig-
ital adaptive control system for a class of complex dy-
namics. Though the approach is based on known speed-
gradient techniques in continuous time domain, it is di-
rectly worked up in the discrete time to ensure the con-
vexity conditions. The approach is compared with analog
speed-gradient controllers which are translated directly to
the digital time domain. The influence of noisy measures
and modelling errors are tracked along with the analysis of
stability and performance. A comparative case study con-
cerning the guidance of unmanned vehicles for path tracking
illustrates the features of the approaches in this application
field.\end{abstract
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Tools and systematic procedures to design adaptive con-
trol systems have been developed extensively in the past
decade oriented to general classes of nonlinear systems with
uncertainties. The methods however are dominantly repre-
sented by designs in continuous time [Krstíc et al., 1995],
[Fradkov et al., 1999].

When applying digital technology, both in computing
and communication, the implementation of controllers in
digital form is unavoidable. Additionally, in many appli-
cations, the sensorial components work inherently digitally
as samplers [Kinsey et al., 2006]. This is the case of un-
manned vehicles, which will be the application framework
here.
The translation of extended analog-controller design ap-

proaches for underwater vehicles to the discrete-time do-
main is commonly done by a simple digitalization of the
controlling action, and in the case of adaptive controllers,
of the adaptive laws too [Antonelli, 2006], [Smallwood and
Whitcomb, 2003].
This way generally provides a good control system be-

havior, however the role played by the sampling time in the
stability and performance must be cautiously investigated
due to potential instability.
Additionally noisy measures and digitalization errors

may not only affect the stability properties significantly
but also increase the complexity of the analysis.
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In this paper we attempt to research the path tracking
sampled-data control with two alternatives. One way is
the usual translation of a designed analog controller to the
digital domain. The second way is the direct design in the
discrete-time domain upon approximative models. Both
ways rest on the same design procedure. This last design is
the original contribution of the paper, while the comparison
with the most-extended design technique describes the way
by which we valorize the features of our approach.
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Many systems are described as the conjugation of two
ODEs in generalized variables, namely one for the kinemat-
ics and the other one for the inertia (see Fig. 1). The block
structure embraces a wide range of vehicle systems like
mobile robots, unmanned aerial vehicles, spacecraft and
satellite systems, autonomous underwater vehicles (AUV)
or remotely operated vehicles (ROV), though with slight
distinctive modifications in the structure among them.
The vehicle dynamics is widely described in the literature

[cf. Fossen, 1994]

.
v=M

−1
(
−C (v)v−D(|v|)v+g(η) + τ c+τ

)
(1)

.
η=J (η)(v+vc). (2)

Here η= [x , y , z , ϕ, θ, ψ]T is the generalized position vec-
tor and components referred on a earth-fixed frame, and
v = [u, v, w, p, q, r]

T
is the generalized rate vector referred

on a vehicle-fixed frame. Other variables of the dynamics
and control system are indicated in the Fig. 1 self.
The matrices M , C and D are the inertia, the Coriolis-

centripetal and the drag matrices, respectively, g is the
buoyancy vector and J is the rotation matrix expressing
the transformation from the inertial frame to the vehicle-
fixed frame.
For future developments in the controller design, it is

valid [Jordán and Bustamante, 2009]

M =Ma +Mb (3)

C(v) =
6∑

i=1

Ci .×Cvi (vi) (4)

D(|v|) = Dl +
6∑

i=1

Dqi |vi | (5)
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g(η) = −B1 g1 (η)−B2g2 (η) (6)

whereMb the body inertia andMa the additive mass. The
matrices Ci,Dl,Dqi , B1 and B2 are constant and supposed
unknown, while Cvi ,g1 and g2 are state-dependent and
computable arrays and vi is an element of v. Finally ".×"
is an element-by-element array product.

A. Sampled-data behavior

For the continuous-time dynamics there exists an asso-
ciated exact sampled-data dynamics described by the set
of sequences {η(ti),v(ti)}=

{
ηti ,vti

}
with a sampling rate

h.
In the presence of measure disturbances δηtn and δvtn ,

the samples are represented by {ηδ(ti),vδ(ti)}=
{
ηδti

,vδti

}

(see Fig. 1). Moreover, we will concentrate on the influ-
ence of measure disturbances and of model errors on the
stability when no exogenous perturbations are present. In

this way we have τ c=vc=0 , v=
−
v and η=

−
η. For details

of the influence of perturbations and model errors in the
control, the reader can referred to a study in [Jordán and
Bustamante, 2008] and [Jordán and Bustamante, 2007], re-
spectively.

UV ODE
(kinematic part)

 ττττn VUV ODE
(inertial part)

ηηηη

δδδδτ=ττττc

V

ηηηη

Adaptive
sampled-data

controller

εεεεηn
εεεενn

D/A
with sample 

holder

 ττττtn

ηηηηδ tn

A/D

Vc

~ηηηηtn

Vtn
~

δδδδV

Vδ

δδδδηηηη
    ηηηηδ

vδ tn

vr tn

ηηηηrtn

Fig. 1 - Digital adaptive control system for underwater
vehicles

B. Sampled-data model

Let (1)-(2) be described in a compact form by

v̇ = M
−1

p(η,v)+M
−1

τ (7)

η̇ = q(η,v), (8)

with p and q being Lipschitz vector functions located at
the right-hand memberships. Now, employing a one-step-
ahead predictor (see [Jordán et al., 2010] for higher order
Adams-Bashforth approximators)

vn+1 = vtn+h
(
M

−1

ptn+M
−1

τn

)
(9)

ηn+1 = ηtn+hqtn , (10)

where ηn+1 and vn+1 are one-step-ahead predictions at
the present time step tn. Moreover, τn is the discrete-time
control action at tn, which is equal to the sample τ (tn)
because of the employed zero-order sample holder.
More precisely it is valid with (1)-(2)

ptn=−

(
6∑

i=1

Ci .×Cvitn vtn+Dlvtn+ (11)

+
6∑

i=1

Dqi |vitn |vtn+B1
g
1tn
+B

2
g
2tn

)

qtn = Jtnvtn (12)

where vtn marks the dependence of a variable with the
sampling time.
We define local model errors as

εvn+1 = vtn+1−vn+1 (13)

εηn+1 = ηtn+1−ηn+1 , (14)

with εηn+1 , εvn+1 ∈ O(h) and O an order of magnitude
function.
Since p and q are Lipschitz continuous, the samples,

predictions and local errors all yield bounded. So it is valid
the property vn+1→vtn+1 and ηn+1→ηtn+1 for h→ 0.

C. 1st-order predictor with disturbances

By the presence of disturbances it is valid from (9)-(10)

vn+1 = vtn+δvtn+hM
−1p

(
vtn+δvtn ,ηtn+δηtn

)
+(15)

+hM
−1

τn

ηn+1 = ηtn+δηtn+hq

(
vtn+δvtn ,ηtn+δηtn

)
, (16)

where δvtn and δηtn are the measure disturbances (cf. Fig.
1) and pδtn and qδtn are perturbed functions p and q, re-
spectively.

III. D��
�� I: S���
��-���� �����
�� 	�����

��

The first goal in the paper is to design a general class of
adaptive control systems in a discrete time domain directly.
The control problem is focused to the path tracking of a
geometric reference ηrtn

as well as of a kinematic reference

vrtn
(cf. Fig. 1).

For the following cost function

Qtn =
∽
η
T

tn

∽
ηtn+

∽
v
T

tn

∽
vtn . (17)

the ideal situation demands that

lim
tn→∞

Qtn=0 , (18)

A. Control action

Let us try out first the following change of coordinates

∽
ηtn = ηtn+δηtn−ηrtn

(19)

∽
vtn = vtn+δvtn−J

−1

δtn
η̇rtn+J

−1

δtn
Kp

∽
ηtn . (20)

where Kp = K
T

p ≥ 0 is a design gain matrix affecting
the geometric path errors and the subscript "δtn" means a
variable that is perturbed with noisy measures. Clearly, if
∽
ηtn≡0, then by (20) and (2), it yields vtn+δvtn−vrtn≡0,
with vtn close to vrtn with error δvtn as in Fig. 1.
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Employing (15) and (16) in (19) and in (20), and finally
the last both equation in (17), one obtains after some cal-
culations

∆Qtn = Qtn+1−Qtn=

(
(I − hKp)

∽
ηtn+h

(
Jδtn

∽
vtn+η̇rtn

)
+

+ ηrtn−ηrtn+1+εηn+1+δηtn+1

)2

−
∽
η
2

tn
+

+

(
∽
vtn+J

−1

δtn
η̇rtn−J

−1

δtn
Kp

∽
ηtn−J

−1

δtn+1
η̇rtn+1

+J
−1

δtn+1
Kp

∽
ηtn+1+

+ h
(
M

−1

pδtn+M
−1

τn

)
+δvtn+1+εvn+1

)2

−
∽
v
2

tn
. (21)

We can now conveniently split the control thrust τn into
two terms as

τn = τ1n + τ 2n , (22)

The first term, τ1n , serves to neutralize some specific terms
in (21) with nondefinite sign. Thus

τ 1n = −Kv
∽
vtn−

1

h
M

(
J
−1

δtn
η̇rtn+J

−1

δtn
Kp

∽
ηtn+ (23)

+J
−1

δtn+1
η̇rtn+1

−J
−1

δtn+1
Kp

∽
ηtn+1

)
−rδtn ,

with Kv = K
T

v ≥ 0 another design gain matrix for affecting
the kinematic errors, and rδtn being

rδtn=−
6∑

i=1

Uin .×Cvitn vδtn−U7nvδtn− (24)

−
6∑

i=1

U7+in |vitn |vδtn+U14ng1δtn +U15n g2δtn ,

where the matrices Ui will account for every unknown sys-
temmatrix in the partial control action τ 1n with the unique
exception of the inertia matrix M from which only a lower
boundM is demanded. The construction of the Ui´s is de-
fined later as part of the design of the adaptive controller.
Putting τ 1n in ∆Qtn , it only remains the definition of

τ 2n . Certainly, with K
∗

v

△
=M

−1

Kv one gets

∆Qtn = h2(M−1τ2n )
2

+b
T

nM
−1

τ 2n+cn + (25)

+
∽
η
T

tn
hKp (hKp − 2I )

∽
ηtn+

∽
v
T

tn
hK

∗

v

(
hK

∗

v − 2I
)
∽
vtn+

+fUi ((U
∗

i −Ui) ,
(
I −M

−1

M
)
)+

+fε,δ(εηn+1 ,εvn+1 ,δηtn+1 ,δvtn+1 ) ,

where bn and cn are variables of the geometric and kine-
matic path errors and the respective path references, model
errors and disturbances, and finally of the controller and
system matrices. The functions fUi and fε,δ are sign-
nondefined scalar functions. They both satisfy

lim
Ui→U∗

i

fUi = 0 and lim
ε,δ→0

fε,δ = 0, (26)

where the Ui’s are the controller matrices and the U∗i ’s are
the system matrices assigned as

U
∗

i = Ci, with i = 1, ...6 (27)

U
∗

7 = Dl , U
∗

i = Dqi, with i = 8, ...13 (28)

U
∗

14 = B1 and U
∗

15 = B2 . (29)

For space limitations in the paper we do not transcribe
analytical expressions for bn, cn, fUi and fε,δ, which are
obtained after some calculations by inserting (11), (23),
(22) and (24) in (21).
Now, the functional can be minimized by choosing the

second component of the control action, it is τ2n , properly.
For instance

h2
(
M

−1

τ2n

)2
+b

T

nM
−1

τ 2n+c̄n=0 . (30)

where bn and c̄n are variables of the measured geometric
and kinematic path errors and their respective path ref-
erences only. Unlike bn and cn in (21), bn and c̄n are
implementable.
So, to fulfill (30), we choose

τ2n=M τ 2n , (31)

with

τ2n =
−bn
2h2

±
1

2h2

√
b
T

n bn−4h
2 c̄n

6
o. (32)

In order to implement τ 2n while eventually there does
not exist real roots in (32), one can chose the real part

of the resulting complex roots, namely τ2n =
−bn

2h2 . The
implications of this choice in the stability of the control
system will be analyzed later.
So the control action to be applied to the vehicle system

is τn = τ 1n + τ2n with the two components given in (23)
and (31), respectively.

B. Ideal adaptive laws

According to the speed-gradient law suggested by [Frad-
kov et al., 1999], the adaptation of the system behavior
occurs with the permanent actualization of the controller
matrices Ui´s

Uin+1
∆
= Uin − Γi

∂∆Qtn
∂Ui

, (33)

with a gain matrix Γi = Γ
T

i ≥ 0 and
∂∆Qtn

∂Uin
being a gradient

matrix for Uin .
For convenience we first define an expression for the gra-

dient matrix upon ∆Qtn in (25) with the consideration
that M is known. This expression is referred to the ideal
gradient matrix

∂∆Qtn
∂Ui

= −2h
2

M
−T
(
M

−1

τ 2n

)(∂rδtn
∂Ui

)T

− (34)

−2h
2

M
−T

M
−1

(pδtn−rδtn )

(
∂rδtn
∂Ui

)T

−

−2hM
−T

(I − hK
∗

v )
∽
vtn

(
∂rδtn
∂Ui

)T

.
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Next we derive a real counterpart of
∂∆Qtn

∂Ui
.

C. Practical adaptive laws

The unknown M in (34) is replaced by its lower bound
M . Moreover, the term pδtn is unknown and can not be
reconstructed exactly from pδtn =M

.
vtn−τn=, instead we

replace it by pδtn=M
vtn−vtn−1

h
−τn .

In this way, we can generate implementable gradient ma-

trices which will denote by
∂∆Qtn

∂Ui
. So following relations

can be established for i ≥ 1

∂∆Qtn
∂Ui

=
∂∆Qtn
∂Ui

+∆Uin , (35)

with
∆Uin = δM−2Ain + δM−1Bin , (36)

where δM−2 =
(
M

−T

M
−1

−M
−T

M
−1
)
≥ 0 and δM−1 =

(
M

−1

−M
−1
)
≥ 0. Here Ain and Bin are sampled state

functions obtained from (34) after extracting of the com-
mon factors δM−2 and δM−1 , respectively.
It is worth noticing that ∆Qtn and ∆Qtn (it is, ∆Qtn

with M
−1

instead of M
−1

), satisfy convexity properties in
the space of elements of the Ui’s. Moreover, with (35)
in mind we can conclude for any pair of values of Uin ,

say U
′

in
of U

′′

in
, it is valid

∆Qtn(U
′

in
)−∆Qtn (U

′′

in
) ≤

∂∆Qtn(U
′′

in
)

∂Ui

(
U

′

in
−U

′′

in

)
≤ (37)

≤
∂∆Qtn(U

′′

in
)

∂Ui

(
U

′

in
−U

′′

in

)
. (38)

This feature will be useful in the next analysis.

D. Stability analysis

First let ∆Q
∗

tn
be the same functional as (25) but with

τ 2n and U∗i = Ui in (27)-(29), so fUi = 0 and

∆Q
∗

tn
=
∽
η
T

tn
hKp(hKp−2I )

∽
ηtn+

∽
v
T

tn
hKv(hK

∗

v −2I )
∽
vtn+(39)

+f ∗

∆Qn
[εηn+1 ,εvn+1 ,δηtn ,δvtn ,M

−1

M ],

with

f ∗

∆Qn
= fUi(U

∗

i =Ui ,
(
I −M

−1

M
)
)+ (40)

+fε,δ(εηn+1 ,εvn+1 ,δηtn+1 ,δvtn+1 ).

Since
(
εvn+1+δvtn+1

)
,
(
εvn+1+δvtn+1

)
and M

−1

M ∈ l∞,
then one can conclude that f ∗

∆Qn
∈ l∞ as well (this can be

accomplished by putting τn=τ 1n+τ2n in (21) and isolating
the terms with the perturbations).
It is noticing that the quadratic form fulfills ∆Q

∗

tn
<

0, at least in an attraction domain equal to B ={
∽
ηtn ,

∽
vtn ∈ R

6 ∩ B∗0n

}
with B∗0n a residual set around zero

with
B∗0n=

{
∽
ηtn ,

∽
vtn∈R

6/∆Q
∗

tn
− f ∗∆Qn

≤ 0
}

(41)

and with the design matrices satisfying the conditions

2

h
I > Kp ≥ 0 and

2

h
I > K∗

v ≥ 0, (42)

with K
∗

v =M
−1

Kv, which is equivalent to

2

h
M ≥

2

h
M > Kv ≥ 0. (43)

The residual set B
∗

0 depends not only on εηn+1 and εvn+1

and the measure noises δηtn and δvtn , but also onM
−1

M .
In consequence, B

∗

0 becomes the null point at the limit
when h→ 0, δηtn , δvtn → 0 and M =M .
Next, for proving stability of the adaptive control system

let a candidate Lyapunov function be

Vtn = Qtn +
1

2

15∑

i=1

6∑

j=1

(
∼

u
T

j

)

in+1
Γ−1i

(
∼

uj

)

in+1
− (44)

−
1

2

15∑

i=1

6∑

j=1

(
∼

u
T

j

)

in
Γ−1i

(
∼

uj

)

in
,

with
(
∼
uj

)

in
=
(
uj−u∗j

)
in
, where uj and u∗j are vectors cor-

responding to the column j of the adaptive controller ma-
trix Uin and its homologous one U∗i , respectively. Then,
taking ∆Vtn = Vtn+1 − Vtn it is valid

∆Vtn=∆Qtn +
15∑

i=1

6∑

j=1

(
∆uTj

)
in
Γ−1i

(
∼
uj

)

in
− (45)

−
1

2

15∑

i=1

6∑

j=1

(
∆uTj

)
in
Γ−1i (∆uj )in ≤

≤ ∆Qtn −
15∑

i=1

6∑

j=1

(
∂∆Qtn
∂uj

)T (
∼

uj

)

in
≤

≤∆Qtn−
15∑

i=1

6∑

j=1

(
∂∆Q tn

∂uj

)T(
∼

uj

)

in
≤∆Q∗tn< 0 in B ∩ B∗0 ,

with (∆uj )in a column vector of
(
Uin+1−Uin

)
. At the first

inequality, the adaptive law (33) for the column vector

(∆uj )in was replaced by the column vector −Γi
(
∂∆Qtn

∂uj

)

and then by −Γi
(
∂∆Qtn

∂uj

)
in the right member according

to (35) and (37)-(38). So in the second and third inequal-
ity, the convexity property of ∆Qtn in (37) was applied for
any pair (U ′ = Uin , U

′′ = U∗i ).
This analysis has proved convergence of the error paths

when real roots exist in the equation

√
b
T

n bn−4 āc̄n of
(31).

If on the contrary 4h2c̄n > b
T

nbn occurs at some time tn,
one chooses the real part of the complex roots in (31). So
a suboptimal control action is employed instead equal to

τ 2n=
−1

2h2
Mbn=

−M

h
(I − hK ∗

v )
∽
vtn , (46)
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and yields a new functional ∆Q∗∗tn in

∆Vtn ≤ ∆Q
∗∗

tn
= ∆Q∗tn + c̄n −

1

4h2
b
T

nbn < 0 in B ∩ B∗∗0 ,

(47)
where ∆Q∗tn is (39) with a real root of (31) and B∗∗0 is
a new residual set. It is worth noticing that the positive

quantity
(
c̄n −

1
4h2b

T

n bn

)
can be reduced by choosing h

small. Nevertheless, B∗∗0 results larger than B∗0 in (45),
since its magnitude depends not only on εηn+1 and εvn+1

but also on the magnitude of
(
c̄n −

1
4h2b

T

n bn

)
.

E. Summary of the adaptive control algorithm I

The adaptive control algorithm I can be summarized as
follows.
Preliminaries:
1) Estimate a lower bound M , for instance M =Mb,
2) Define design gain matrices Kp and Kv according to

(42)-(43),
3) Define the adaptive gain matrices Γi (usually Γi = αiI

with αi > 0),
4) Define the desired sampled-data path references for

the geometric and kinematic trajectories in 6 DOFs: ηrtn
and vrtn , respectively.
Continuously at each sample point:
5) Calculate the control thrust τn with components

τ 1n in (23) and τ 2n (31) (or (46)), respectively,
6) Calculate the adaptive controller matrices (34) with

the lower bound M instead of M .
Long-term tuning:
7) RedefineKp andKv in order to achieve optimal track-

ing performance.

IV. D��
�� II: D
�
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�� �����
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A homologous adaptive speed-gradient-based method in
the analog form was published in [Jordán and Bustamante,
2008]. The design leads however to analog adaptive laws
that looks more simple instead that the digital counterpart
of design I. So we will attempt to describe and employ
the digitalized analog laws to the same dynamics (1)-(6) of
Section 2.
Thus we depart from the analog control feedback law

τ=
6∑

i=1

Ui .×Cvi (vi)v+U7v+
6∑

i=1

Ui+7 |vi | v+ (48)

+U14g1+U15g2+U16d−Kv
∽
v−JT

∽
η ,

with

d=
d

dt

(
J
−1

(η)
.
ηr

)
−
dJ

−1

(η)

dt
Kp

∽
η+ (49)

+J
−1

(η)K
2

p

∽
η−J

−1

(η)KpJ (η)
∽
v .

where Kp and Kv are design matrices with similar mean-
ing as in the previous design. The Ui’s are the matrices

of the adaptive controller obtained by speed-gradient laws
[Fradkov et al., 1999]

U̇i = −Γi
∂Q̇(Ui)

∂Ui
, (50)

where Γi = ΓTi ≥ 0 are design matrices for the adaptive

laws. Herein Q = 1
2

∽
η
T∽
η + 1

2

∽
v
T
M

∽
v is the proposed func-

tional from which the analog control action (48) was built
up.
In order to obtain a digital counterpart of (48), we can

at this point simply digitalize τ to obtain a discrete-time
sequence τn as function of samples of the states, namely
ηtn and vtn , of the references, namely ηrtn and vrtn .
At this point, it is convenient to construct the sequence

dtn for τn in (48) not as simple samples from (49), but also

by using incremental quotient on the derivatives dJ
−1
(η)

dt
.

So, one achieves

dtn=h
−1
(
J
−1

tn

(
η̇rtn−Kp

∽
ηtn

)
−J

−1

tn+1

(
η̇rtn+1

−Kp
∽
ηtn+1

))
. (51)

Finally the actualizations of Uin are calculated as

Uin+1 = Uin − hΓi
∂Q̇(Ui)

∂Ui

∣∣∣∣∣
tn

. (52)

for n = 0, 1, 2, ....
Summarizing, (48), (51) and (52) will be the basic equa-

tions of the new digital design.

A. Stability analysis

To this end we can as usually calculate increments
∆Qtn = Qtn+1 − Qtn from Q so as to prove stability of
the discretized adaptive control system with feedback se-
quences τn , dtn and Uin .
We now state ∆Qtn = Qtn+1 − Qtn and consider model

errors and noisy measures. With (48) and (51) in (21) it
results

∆Qtn =

(
(I − hKp)

∽
ηtn+h

(
Jtn

∽
vtn+η̇rtn

)
+ (53)

+ ηrtn−ηrtn+1+εηn+1+δηtn+1

)2

−
∽
η
2

tn
+

+

(
∽
vtn+J

−1

tn
η̇rtn−J

−1

tn
Kp

∽
ηtn−J

−1

tn+1
η̇rtn+1

+J
−1

tn+1
Kp

∽
ηtn+1+

+ h

(
M

−1

(
−

6

Σ
i=1

(Cci −Uin ) .×Cvivtn− (Dl −U7n )vtn−

−
6

Σ
i=1
(Dqi−Ui+7n ) |vitn |vtn−(B1−U14n )g1tn−(B2−U15n )g2tn−

−U16ndtn−Jtn
∽
ηtn−Kv

∽
vtn

))
+ δvtn+1 +εvn+1

)
−
∽
v
2

tn
.

It is worth remarking that τn does not cancel all the sign-
undefined terms in (53) because τ was designed upon Q̇
and not upon ∆Qtn .
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Similarly as done in (25), we develop the squares onto
(53) and make Uin to tend to the values U

∗

in
’s of (27)-(29).

So, one attains

∆Q
∗

tn
=

∽
η
T

tn
hKp (hKp − 2I )

∽
ηtn+ (54)

+
∽
v
T

tn
h
(
K

∗

vM
(
hK

∗

v − I
)
−MK

∗

v

)
∽
vtn

+fη,v + fδ,ε,

with the two sign-undefined components, namely a similar
to the previous error function in (39), a new fδ,ε and a
undefined-sign state-dependent new function

fη,v =
(
h(Jtn

∽
vtn+η̇rtn )+ηrtn−ηrtn+1

)2
+ (55)

+h
2∽
η
T

tn
JtnM

−T

J
T

tn

∽
ηtn+2

(
h
(
Jtn

∽
vtn+η̇rtn

)
+ ηrtn−ηrtn+1

)T

(I − hKp)
∽
ηtn−h

∽
η
T

tn
J
T

tn
M

−T

M
(
I − hK

∗

v

)
∽
vtn−

−h
∽
v
T

tn

(
I − hK

∗

v

)T
J
T

tn

∽
ηtn .

It is worth emphasized that this term is not present in the
first design.
Herein, it is equally supposed that Kp and K

∗

v are so
chosen that satisfy conditions (42)-(43).
If the disturbances and model errors in measured states

disappear, then fδ,ε = 0. However, this is not the case
with the new term fη,v in (55) that arises only in ∆Q

∗

tn
of

the second controller design. This is very critical because
it compromises the stability still when fδ,ε = 0.
To evidence this instability let us suppose Jtn is large

(which typically occurs for instance by a pitch angle θ � 40
degrees). In consequence, still for h small, the positive-

defined terms
(
hJtn

∽
vtn

)2
and h

2∽
η
T

tn
JtnM

−T

J
T

tn

∽
ηtn in (55),

may accomplish

h
∽
η
T

tn
JtnM

−T

J
T

tn

∽
ηtn+h

∽
v
T

tn
J
2

tn

∽
vtn > (56)

>
∽
η
T

tn
Kp (2I−h)

∽
ηtn+

∽
v
T

tn

(
K

∗

vM
(
hK

∗

v−I
)
−MK

∗

v

)
∽
vtn

for
∽
ηtn (0 ),

∽
vtn (0 ) �= 0 and the control system is potentially

unstable.
This property let us conclude that a simple translation

of an analog high-performance adaptive controller in the
discrete time domain is inherently unstable.

V. C��� �����

In this section we present simulations of the control for a
full actuated underwater vehicle described in [Jordán and
Bustamante, 2009] in the context of a path-tracking prob-
lem in 6 degrees of freedom. The geometric reference path
concerns a planar motion with immersions to the sea floor
where the vehicle mass is changed according to Fig. 2. The

programmed reference velocity vector was chosen accord-
ing to a high cruise speed (both in rectilinear stretches and
curves).

The goal in this Section is to illustrate the vehicle behav-
ior in the light of the obtained results of digital adaptive
controllers. Here, the two described approaches are simu-
lated comparatively.

The most important a-priori information for the adap-
tive controller design is the ODE-structure in (1)-(2). The
values of the dynamics matrices are assumed unknown for
the adaptive controllers with the exception of the lower
bound for the inertia matrix M . This takes the form

M =Mb +Ma (57)

with the body matrixMb and the additive matrixMa given
by

Mb = Mbn + δ(t− tA′) Mb∆+ − δ(t− tB′) Mb∆−(58)

Ma = Man + δ(t− tA′) Ma∆+ − δ(t− tB′) Ma∆− ,(59)

where Mbn and Man are nominal values of Mb and Ma at
the start point O, and Mb∆− ,Mb∆+ ,Ma∆+ and Ma∆− are
positive and negative variations at instants tA′ and tB′ on
the points A′ and B′ of Fig. 2. Here δ(t − ti) represents
the Dirac function.

For our application Mbn is experimentally determinable
beforehand and the resulting value is given to the required
lower bound M . In the simulated scenario, Mb∆− rep-
resents the known mass of an equipment deposited on
the seafloor. However Mb∆+ , Ma∆+ and even Ma∆− ,
are unknown for the adaptive controllers. The property
of Ma ≥ 0 is not affected by the sign of its variations
Ma∆+and Ma∆− . For that reason, a valid lower bound
is chosen as M =Mbn −Mb∆− .

Taking into account the simulation setup for the weight
changes (one weight picked up from the seafloor at tA′ and
the second weight deposited on the seafloor at tB′), the
lower bound for M is

M = diag(60, 60, 60, 5, 10, 10), (60)

and the mass variations are

Mbn = diag(80, 80, 80, 4.39, 8.06, 9.17)

Man = diag(75, 126, 308, 2.3, 5.21, 5.51)

Mb∆+ = diag(10, 10, 10, 0.6250, 4.2250, 3.6)

Mb∆− = diag(20, 20, 20, 1.25, 1.25, 0)

Ma∆+ = diag(6.3, 15.4, 0.115, 0.115, 0.261, 0.276)

Ma∆− = diag(12.6, 30.8, 0.23, 0.23, 0.521, 0.551).

Besides Mb andMa we have the physical matrices of the
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ROV dynamics

Dq11 = 130 |u| Dq22 = 195 |v| Dq33 = 286 |w|
Dq44 = 5.0052 |p| Dq55 = 10.5485 |q| Dq66 = 10.1787 |r|
Dq42 = 48.75 |v| Dq51 = 32.5 |u|
Dqij = 0 for the remainder terms

Dl11 = 6.5 Dl22 = 9.75 Dl33 = 14.3
Dl44 = .1747 Dl55 = .3682 Dl66 = .3553
Dl42 = 2.4375 Dl51 = 1.5625
Dqij = 0 for the remainder terms

where Cb (v), Ca (v) and g were deduced from Mb and Ma

(see [Fossen, 1994]).

According to (42) the controller design gain matrices
were selected for a proposed sampling time of h = 0.05(s).
So

Kp =
I

h
= (20, 20, 20, 20, 20, 20)

Kv =
M

h
= diag (1200, 1200, 1200, 100, 200, 200)

and the adaptive gain matrices about

Γi = I . (61)

B

A’

A

B’

∆Μ > 0

∆Μ < 0

O

20
(m

)

10
(m

)

5(m)

Fig. 2 - Path tracking with grab sampling (A′), and with
placing of an equipment on the seafloor (B′)

Figs. 3 and 4 present the control performance for the
two approaches labelled as DAC (Digital Adaptive Control
of the design I) and DAAC (Digitalized Analog Adaptive
Control of the design II). The design matrices were tuned
appropriately for the both approaches.

Comparatively, the path errors were much more larger
both in position and kinematics for the digitalized approach
DAAC. This had occurred in all transients. The steady-
state performance show a similar disproportion between
both algorithms in favour of our approach. Additionally,
the DAAC turns unstable by other selection of the design
matrices Kv and Kp. This is illustrated in the first period
of the simulation. On the contrary, the DAC also main-
tains its stability for higher sampling time (h about 0.5(s))
meanwhile the DAAC turns unstable.
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Fig. 3 - Comparative time evolution of geometric path
errors during transients
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during transients

VI. C��	
��
���

In this paper two design approaches for digital adaptive
controllers oriented to complex dynamics were developed.
The application field for the system class is the guidance of
underwater vehicles in the context of path tracking prob-
lems. The first design approach is developed entirely on
the discrete time domain and employs speed-gradient tech-
niques and first order approximation models. Conditions
for accomplishing convexity of the adaptive laws and as-
ymptotic stability are derived. The second design approach
is based on the digitalization of the same but analog speed-
gradient technique. In both approaches noisy measures and
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model errors were considered.
A particularity of the designed digital adaptive control

is the need of providing a lower bound of the inertia ma-
trix, which is totally plausible in the system class we are
contemplating through the body inertia matrix.
A substantial difference between both approaches had

emerged from the stability analysis. While the design II
with the digitalized analog adaptive controller show po-
tentially unstable behavior when the sampling time is not
"sufficiently" small to fulfill a particular inequality, the dig-
ital adaptive control system of the design I is always stable.
The influence of noisy measures and model errors is about
the same in both cases and may be attenuated by choosing
a small h.
Finally, a case study emulating a sampling mission was

simulated. Features indicated in the theory could be evi-
denced in the control behavior of both approaches.
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