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Abstract— This paper deals with the design of a dig-
ital adaptive control system for a class of complex dy-
namics. Though the approach is based on known speed-
gradient techniques in continuous time domain, it is di-
rectly worked up in the discrete time to ensure the con-
vexity conditions. The approach is compared with analog
speed-gradient controllers which are translated directly to
the digital time domain. The influence of noisy measures
and modelling errors are tracked along with the analysis of
stability and performance. A comparative case study con-
cerning the guidance of unmanned vehicles for path tracking
illustrates the features of the approaches in this application
field.\end{abstract
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I. INTRODUCTION

Tools and systematic procedures to design adaptive con-
trol systems have been developed extensively in the past
decade oriented to general classes of nonlinear systems with
uncertainties. The methods however are dominantly repre-
sented by designs in continuous time [Krstié et al., 1995,
[Fradkov et al., 1999].

When applying digital technology, both in computing
and communication, the implementation of controllers in
digital form is unavoidable. Additionally, in many appli-
cations, the sensorial components work inherently digitally
as samplers [Kinsey et al., 2006]. This is the case of un-
manned vehicles, which will be the application framework
here.

The translation of extended analog-controller design ap-
proaches for underwater vehicles to the discrete-time do-
main is commonly done by a simple digitalization of the
controlling action, and in the case of adaptive controllers,
of the adaptive laws too [Antonelli, 2006], [Smallwood and
Whitcomb, 2003].

This way generally provides a good control system be-
havior, however the role played by the sampling time in the
stability and performance must be cautiously investigated
due to potential instability.

Additionally noisy measures and digitalization errors
may not only affect the stability properties significantly
but also increase the complexity of the analysis.
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In this paper we attempt to research the path tracking
sampled-data control with two alternatives. One way is
the usual translation of a designed analog controller to the
digital domain. The second way is the direct design in the
discrete-time domain upon approximative models. Both
ways rest on the same design procedure. This last design is
the original contribution of the paper, while the comparison
with the most-extended design technique describes the way
by which we valorize the features of our approach.

II. PARTICULAR DYNAMICS CLASS

Many systems are described as the conjugation of two
ODE:s in generalized variables, namely one for the kinemat-
ics and the other one for the inertia (see Fig. 1). The block
structure embraces a wide range of vehicle systems like
mobile robots, unmanned aerial vehicles, spacecraft and
satellite systems, autonomous underwater vehicles (AUV)
or remotely operated vehicles (ROV), though with slight
distinctive modifications in the structure among them.

The vehicle dynamics is widely described in the literature
[¢f. Fossen, 1994]

v=M" (—C(V)V—D(|V|)v+g(77) +TC+T) (1)
n=J(n)(v+ve). (2)
Here n={z,y, z, v, 0, 1] T is the generalized position vec-
tor and components referred on a earth-fixed frame, and
v = [u,v,w,p,q, ’I“]T is the generalized rate vector referred
on a vehicle-fixed frame. Other variables of the dynamics
and control system are indicated in the Fig. 1 self.

The matrices M, C and D are the inertia, the Coriolis-
centripetal and the drag matrices, respectively, g is the
buoyancy vector and J is the rotation matrix expressing
the transformation from the inertial frame to the vehicle-
fixed frame.

For future developments in the controller design, it is
valid [Jorddn and Bustamante, 2009]
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g(m) = —B; g1(n) — B2g2(n) (6)

where Mj, the body inertia and M, the additive mass. The
matrices Cj, Dy, Dy,, B and By are constant and supposed
unknown, while C,,,g; and gz are state-dependent and
computable arrays and v; is an element of v. Finally ".x"
is an element-by-element array product.

A. Sampled-data behavior

For the continuous-time dynamics there exists an asso-
ciated exact sampled-data dynamics described by the set
of sequences {n(t;), v(t:)} = {m,, vy, } with a sampling rate
h.

In the presence of measure disturbances dn, and dvy,,

the samples are represented by {n;s(t;), vs(¢;)} = {77& Ve,

(see Fig. 1). Moreover, we will concentrate on the influ-
ence of measure disturbances and of model errors on the
stability when no exogenous perturbations are present. In
this way we have 7.=v.=0, v=v and n=n. For details
of the influence of perturbations and model errors in the
control, the reader can referred to a study in [Jorddn and
Bustamante, 2008] and [Jordén and Bustamante, 2007], re-
spectively.
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B. Sampled-data model

Let (1)-(2) be described in a compact form by

v =

"’7:

-1 —1
M pnv)+M T
q(n,v),

(7)
(8)

with p and q being Lipschitz vector functions located at
the right-hand memberships. Now, employing a one-step-
ahead predictor (see [Jordédn et al., 2010] for higher order
Adams-Bashforth approximators)

Vat: = Vi th (Mflptn—l—MﬂTn) 9)
Np+1 = 77t"+thn7 (10)
where 17,,, ; and v, 1 ; are one-step-ahead predictions at

the present time step t,,. Moreover, 7, is the discrete-time
control action at t,, which is equal to the sample 7(t,)
because of the employed zero-order sample holder.

More precisely it is valid with (1)-(2)
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where v; marks the dependence of a variable with the
sampling time.

We define local model errors as

€ty Vier: —Vnt1

€77n+1 ntn+1 Mot

with &, ., €4,,, € O(h) and O an order of magnitude
function.

Since p and q are Lipschitz continuous, the samples,
predictions and local errors all yield bounded. So it is valid
the property vy —vy,,, and 1, ,—mn,  for h — 0.

C. 1st-order predictor with disturbances

By the presence of disturbances it is valid from (9)-(10)

Vpt1 = th+5th+hM1P<th +6vi, My, +57Itn> +(15)
+hM717'n
MNpr1 = "7tn+5"7tn+hQ<th+5tha"7tn +5"7tn> ) (16)

where 0v;, and én, are the measure disturbances (cf. Fig.
1) and ps, and qs, are perturbed functions p and q, re-
spectively.

III. DESIGN I: SAMPLED-DATA ADAPTIVE CONTROLLER

The first goal in the paper is to design a general class of
adaptive control systems in a discrete time domain directly.
The control problem is focused to the path tracking of a
geometric reference Ny, as well as of a kinematic reference
vy, (cf Fig. 1).

For the following cost function

T T
Qt, = N, M, TV, Vi, (17)
the ideal situation demands that
thm Qtn:07 (18)

A. Control action

Let us try out first the following change of coordinates

Ny, = 77t"+577t"*77r% (19)
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Vi, = Vg, +(5th _J(Stn 'r’nn +J5tn Kp'r’tn . (20)
where K, = KZ > 0 is a design gain matrix affecting

the geometric path errors and the subscript "5, " means a

variable that is perturbed with noisy measures. Clearly, if
?]tnEO, then by (20) and (2), it yields v, +dvy, —v,, =0,
with v, close to v, with error dvy, as in Fig. 1.



Employing (15) and (16) in (19) and in (20), and finally
the last both equation in (17), one obtains after some cal-
culations
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We can now conveniently split the control thrust 7, into
two terms as

Tpn=T1, +T2, (22)

The first term, 74, serves to neutralize some specific terms
in (21) with nondefinite sign. Thus
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with K, = KZ > 0 another design gain matrix for affecting
the kinematic errors, and rs, being
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where the matrices U; will account for every unknown sys-
tem matrix in the partial control action 77, with the unique
exception of the inertia matrix M from which only a lower
bound M is demanded. The construction of the U; s is de-
fined later as part of the design of the adaptive controller.

Putting 74, in AQ)y,, it only remains the definition of
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Tg,. Certainly, with K, = M 1Kv one gets
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where b,, and ¢,, are variables of the geometric and kine-
matic path errors and the respective path references, model
errors and disturbances, and finally of the controller and
system matrices. The functions fy, and f. s are sign-
nondefined scalar functions. They both satisfy

plim f,=0 end  lm fos=0, (26)

where the U;’s are the controller matrices and the U;’s are
the system matrices assigned as

U, =C;, withi=1,..6 (27)
U, =D;, U =D, withi=8,..13  (28)
U,=B and Ujz=DhB;. (29)

For space limitations in the paper we do not transcribe
analytical expressions for by, ¢, fy, and f. s, which are
obtained after some calculations by inserting (11), (23),
(22) and (24) in (21).

Now, the functional can be minimized by choosing the
second component of the control action, it is T4, , properly.
For instance

h? (M’l—rgn)? +br Mg+ En=0. (30)
where b,, and ¢, are variables of the measured geometric
and kinematic path errors and their respective path ref-
erences only. Unlike b, and ¢, in (21), b, and ¢, are
implementable.

So, to fulfill (30), we choose

Tgn:M ?Qn, (31)
with

J— _T_ _
b, , 1 b, b,—4h%¢,
22 2h? 6 °

In order to implement T4, while eventually there does
not exist real roots in (32), one can chose the real part
of the resulting complex roots, namely Ty = ;—}32@. The
implications of this choice in the stability of the control
system will be analyzed later.

So the control action to be applied to the vehicle system
is 7, = T3, + T2, with the two components given in (23)
and (31), respectively.

Ty, = (32)

B. Ideal adaptive laws

According to the speed-gradient law suggested by [Frad-
kov et al., 1999], the adaptation of the system behavior
occurs with the permanent actualization of the controller
matrices U; s

r, 9AQ:,
SouU;

A

Ui (33)
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with a gain matrix I'; = F > 0 and ﬁp‘ being a gradient
matrix for U; .

For convenience we first define an expression for the gra-
dient matrix upon AQ;, in (25) with the consideration
that M is known. This expression is referred to the ideal
gradient matrix

o ars, \
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Next we derive a real counterpart of —&7+= 8AQt

C. Practical adaptive laws

The unknown M in (34) is replaced by its lower bound
M. Moreover, the term ps, is unknown and can not be
reconstructed exactly from ps, = Mv, —7,=, instead we

. — Vi,
replace it by p;, =M —Th.
In this way, we can generate implementable gradient ma-

trices which will denote by Qt" . So following relations
can be established for 7 > 1
0AQ, O0AQ:
(‘9Ui (‘9Uz + Yin’ (35)
with
AUin =0py—24i, +0py-1Bi,, (36)
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> 0. Here A;

in

and B;

in

(M M are sampled state
functions obtained from (34) after extracting of the com-
mon factors §y,-2 and §,7-1, respectively.

It is worth noticing that AQy, and AQ, (it is, AQy,

with M " instead of M 71), satisfy convexity properties in
the space of elements of the U;’s. Moreover, with (35)
in mind we can conclude for any pair of values of U, ,
say U; of U , it is valid

" aA ’ "
80,0, -0, (1)) < 2% ) (17 ) < an
3AQt ( zn) / "

This feature will be useful in the next analysis.

D. Stability analysis

First let AQ, be the same functional as (25) but with
7o, and U = U; in (27)-(29), so fy, =0 and

AQ, =ny hKy(hKy—2I)n, +v, hK,(hK;—2I)v:+39)

N —1
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Since (ey,,,+0vt,,,) s (€opss +0V4,,,) and MM € I,
then one can conclude that fxf, € le as well (this can be
accomplished by putting 7,=7;,+72, in (21) and isolating
the terms with the perturbations).

It is noticing that the quadratic form fulfills AQ; <
0, at least in an attraction domain equal to B =

{?]tn,\m/tn eRIN an} with B} a residual set around zero
with

0,= {ﬁtn,CtneRWAQ; —fag, < 0} (41)

and with the design matrices satisfying the conditions

2 2
EI > K, >0 and EI > K >0, (42)
with K, = M K,, which is equivalent to
22K, >0 (43)
e

The residual set B; depends not only on &;, . and ey, ,

and the measure noises 61, and dvy,, but also on M - M.
In consequence, B; becomes the null point at the limit
when h — 0, 014, 0vy, — 0 and M = M.
Next, for proving stability of the adaptive control system
let a candidate Lyapunov function be
(), -
Un+1

= Qe+ 222( )
! <ﬁj>in’

where u; and uj are vectors cor-

(44)

~
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with (l’\ij> = (Ujfll;‘)i y
in m
responding to the column j of the adaptive controller ma-

trix U;, and its homologous one U}, respectively. Then,
taking AV, = Vipsr — Vi, it is valid
AV, = AQ, +ZZ (Auf), i (W) - (@)
i=1j=1 tn
PR
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i=1j=1
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ins1—Us, ). At the first
3) for the column vector
BAQtn>

ou;

with (Auy), a column vector of (U
inequality, the adaptive law (3

(Auy), was replaced by the column vector —I'; (

and then by —T; OAQt

to (35) and (37)-(3 ) So in the second and third inequal-
ity, the convexity property of AQy, in (37) was applied for
any pair (U'=U;, ,U" =U}).

This analysis has proved convergence of the error paths

. . . T __
when real roots exist in the equation 4/b, b,—4ac, of

(31).

T
If on the contrary 4h%¢, > b,,b,, occurs at some time t,,,
one chooses the real part of the complex roots in (31). So
a suboptimal control action is employed instead equal to
—1 -M

ma = grr b=

> in the right member according

——=(I — hK})vy,, (46)



and yields a new functional AQ}” in
1 == . * %
anbn < OlanBO y
(47)
where AQ; is (39) with a real root of (31) and Bj* is
a new residual set. It is worth noticing that the positive

A‘/;fn < AQ:: = AQ; +Cn —

quantity (En — 4—}LQE: Bn) can be reduced by choosing h
small. Nevertheless, Bj* results larger than B} in (45),
since its magnitude depends not only on €, and &,,,,

but also on the magnitude of (En - 4—}1125: Bn).

E. Summary of the adaptive control algorithm I

The adaptive control algorithm I can be summarized as
follows.

Preliminaries:

1) Estimate a lower bound M , for instance M = M,

2) Define design gain matrices K, and K, according to
(42)-(43),

3) Define the adaptive gain matrices I'; (usually I'; = ;1
with a; > 0),

4) Define the desired sampled-data path references for
the geometric and kinematic trajectories in 6 DOFs: n,,
and v, , respectively. )

Continuously at each sample point:

5) Calculate the control thrust 7, with components
71,in (23) and T4, (31) (or (46)), respectively,

6) Calculate the adaptive controller matrices (34) with
the lower bound M instead of M.

Long-term tuning:

7) Redefine K, and K, in order to achieve optimal track-
ing performance.

IV. DESIGN II: DIGITALIZED ANALOG ADAPTIVE
CONTROLLER

A homologous adaptive speed-gradient-based method in
the analog form was published in [Jorddn and Bustamante,
2008]. The design leads however to analog adaptive laws
that looks more simple instead that the digital counterpart
of design I. So we will attempt to describe and employ
the digitalized analog laws to the same dynamics (1)-(6) of
Section 2.

Thus we depart from the analog control feedback law

6 6
T:Z Ui. x Gy, (v;)v+ U7V+Z Uirr |vi| v+ (48)
i=1 i=1
+U8,+Uisg, +Uigd—K,v—JTn,
with
d (-, o\ dJ (n) -
d=— r ——K, 4
o (7 i) — = K (49)

+J (mK,n—J (n)K,J(n)v .

where K, and K, are design matrices with similar mean-
ing as in the previous design. The U;’s are the matrices

ot

of the adaptive controller obtained by speed-gradient laws
[Fradkov et al., 1999]

0Q(Uy)

Ui = _Fi ’
oU;

(50)

where T; = I'l' > 0 are design matrices for the adaptive
Tn T

laws. Herein Q@ = in n+3v M v is the proposed func-
tional from which the analog control action (48) was built
up.

In order to obtain a digital counterpart of (48), we can
at this point simply digitalize 7 to obtain a discrete-time
sequence T, as function of samples of the states, namely
7, and vy, of the references, namely #,, and vy, .

At this point, it is convenient to construct the sequence
d;, for 7, in (48) not as simple samples from (49), but also

dJ " (n)

by using incremental quotient on the derivatives =—;

So, one achieves

—1

—1f _—1/(, - . -
d;, =h (Jtn (mtn—Kpmn)—th (nnn+I_Kp’r’tn+1 )) (51)
Finally the actualizations of U;, are calculated as

0Q(U:)
oU;

Ui, =U; —hT; (52)

n+1

tn

forn=0,1,2,....
Summarizing, (48), (51) and (52) will be the basic equa-
tions of the new digital design.

A. Stability analysis

To this end we can as usually calculate increments
AQy, = Qt,., — Qt, from Q so as to prove stability of
the discretized adaptive control system with feedback se-
quences T, d;, and U; .

We now state AQ;, = Q¢,,, — @+, and consider model
errors and noisy measures. With (48) and (51) in (21) it
results

8Qu = ({1 = 16y b (.50 511, )+ (53)

2
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. 6
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6
~2Dgi=Uit7,) |V, [V, —B1=U14,) 81, ~B2=U15,) 82, ~

2

_U16ndt'n_Jtn;:’tn_Kv;tn)> +(5th+1 +5vn+1) _;tn'

It is worth remarking that 7, does not cancel all the sign-
undefined terms in (53) because T was designed upon @
and not upon AQy,.



Similarly as done in (25), we develop the squares onto
(53) and make U;, to tend to the values U; ’s of (27)-(29).
So, one attains

T
AQtn = m, hK, (hK, — 2I) Mg, + (54)
T
4V, h (K; M (hK; - I) ~ MK, ) v,
+fn,v + fﬁ,sa

with the two sign-undefined components, namely a similar
to the previous error function in (39), a new f5. and a
undefined-sign state-dependent new function

2
fow = (W0, 4, —ny, )+ (55)
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T T T
—hv, (I—hKv) I,

It is worth emphasized that this term is not present in the
first design.

Herein, it is equally supposed that K, and K; are so
chosen that satisfy conditions (42)-(43).

If the disturbances and model errors in measured states
disappear, then fs. = 0. However, this is not the case
with the new term f, , in (55) that arises only in AQ:TL of
the second controller design. This is very critical because
it compromises the stability still when fs5. = 0.

To evidence this instability let us suppose Jy, is large
(which typically occurs for instance by a pitch angle 6 Z 40
degrees). In consequence, still for h small, the positive-

RN T — “
defined terms (thn\m/tn> and hzntn Jy, M TJtintn in (55),
may accomplish

T T
h :’A?thtnMiTJti'ﬁtn“‘h ;thfn;tn >

for ;ltn (0),v¢,(0) # 0 and the control system is potentially
unstable.

This property let us conclude that a simple translation
of an analog high-performance adaptive controller in the
discrete time domain is inherently unstable.

V. CASE STUDY

In this section we present simulations of the control for a
full actuated underwater vehicle described in [Jorddn and
Bustamante, 2009] in the context of a path-tracking prob-
lem in 6 degrees of freedom. The geometric reference path
concerns a planar motion with immersions to the sea floor
where the vehicle mass is changed according to Fig. 2. The

programmed reference velocity vector was chosen accord-
ing to a high cruise speed (both in rectilinear stretches and
curves).

The goal in this Section is to illustrate the vehicle behav-
ior in the light of the obtained results of digital adaptive
controllers. Here, the two described approaches are simu-
lated comparatively.

The most important a-priori information for the adap-
tive controller design is the ODE-structure in (1)-(2). The
values of the dynamics matrices are assumed unknown for
the adaptive controllers with the exception of the lower
bound for the inertia matrix M. This takes the form

M = M, + M, (57)

with the body matrix M, and the additive matrix M, given
by

M,
M,

My, +0(t —tar) Mya+ — 6(t —tpr) Mya—(58)
Mg, +6(t —tar) Moa+ — 0(t —tpr) Moa{59)

where M;, and M, are nominal values of M, and M, at
the start point O, and Mya-, Mya+,Maas+ and Mya_ are
positive and negative variations at instants ¢t 4. and tp/ on
the points A’ and B’ of Fig. 2. Here 6(t — t;) represents
the Dirac function.

For our application M, is experimentally determinable
beforehand and the resulting value is given to the required
lower bound M. In the simulated scenario, Mya- rep-
resents the known mass of an equipment deposited on
the seafloor. However Mya+, M a+ and even Mya-,
are unknown for the adaptive controllers. The property
of M, > 0 is not affected by the sign of its variations
Moa+and M, a-. For that reason, a valid lower bound
is chosen as M = My, — Mya-.

Taking into account the simulation setup for the weight
changes (one weight picked up from the seafloor at ¢4 and
the second weight deposited on the seafloor at tp/), the

(56)1ower bound for M is
T T
> 1, Ky (21=h) 0, 4+, (K;M (hK;‘ 71) fMK;> i,

M = diag(60, 60, 60, 5, 10, 10), (60)

and the mass variations are

M, = diag(80,80,80,4.39,8.06,9.17)

M, = diag(75,126,308,2.3,5.21,5.51)
Mya+ = diag(10,10,10,0.6250,4.2250, 3.6)
Mya- = diag(20,20,20,1.25,1.25,0)

Maa, = diag(6.3,15.4,0.115,0.115,0.261,0.276)
Moa- = diag(12.6,30.8,0.23,0.23,0.521,0.551).

Besides M, and M, we have the physical matrices of the



ROV dynamics

Dy, = 286 |w|

D,,, = 5.0052 |p|

=130[u| Dy, =195 0| D
D,.. = 10.5485 g

q33

Dy, =48.75|v| Dy, = 32.5|u|

D,,, = 0 for the remainder terms

D, =6.5 Dy,, =9.75 Dy, =143
Dy, =.1747 Dy, =.3682 D, = .3553

Dy, =2.4375 Dy, =1.5625
Dy,; = 0 for the remainder terms

where Cy, (v), C, (v) and g were deduced from M, and M,
(see [Fossen, 1994]).

According to (42) the controller design gain matrices
were selected for a proposed sampling time of A = 0.05(s).

So

>~

= (20, 20, 20, 20, 20, 20)

=5

= diag (1200, 1200, 1200, 100, 200, 200)

and the adaptive gain matrices about

r=1. (61)

Fig. 2 - Path tracking with grab sampling (A’), and with
placing of an equipment on the seafloor (B’)

Figs. 3 and 4 present the control performance for the
two approaches labelled as DAC (Digital Adaptive Control
of the design I) and DAAC (Digitalized Analog Adaptive
Control of the design II). The design matrices were tuned
appropriately for the both approaches.

Comparatively, the path errors were much more larger
both in position and kinematics for the digitalized approach
DAAC. This had occurred in all transients. The steady-
state performance show a similar disproportion between
both algorithms in favour of our approach. Additionally,
the DAAC turns unstable by other selection of the design
matrices K, and K. This is illustrated in the first period
of the simulation. On the contrary, the DAC also main-
tains its stability for higher sampling time (h about 0.5(s))
meanwhile the DAAC turns unstable.
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Fig. 3 - Comparative time evolution of geometric path
errors during transients
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VI. CONCLUSIONS

In this paper two design approaches for digital adaptive
controllers oriented to complex dynamics were developed.
The application field for the system class is the guidance of
underwater vehicles in the context of path tracking prob-
lems. The first design approach is developed entirely on
the discrete time domain and employs speed-gradient tech-
niques and first order approximation models. Conditions
for accomplishing convexity of the adaptive laws and as-
ymptotic stability are derived. The second design approach
is based on the digitalization of the same but analog speed-
gradient technique. In both approaches noisy measures and



model errors were considered.

A particularity of the designed digital adaptive control
is the need of providing a lower bound of the inertia ma-
trix, which is totally plausible in the system class we are
contemplating through the body inertia matrix.

A substantial difference between both approaches had
emerged from the stability analysis. While the design II
with the digitalized analog adaptive controller show po-
tentially unstable behavior when the sampling time is not
"sufficiently" small to fulfill a particular inequality, the dig-
ital adaptive control system of the design I is always stable.
The influence of noisy measures and model errors is about
the same in both cases and may be attenuated by choosing
a small h.

Finally, a case study emulating a sampling mission was
simulated. Features indicated in the theory could be evi-
denced in the control behavior of both approaches.
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