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1. INTRODUCTION

The classical method for computation of Lyapunov
quantities involves the introduction of the polar
coordinates and the reducing of original system
to normal form [Lyapunov, 1892; Bautin, 1962;
Lloyd & Pearson, 1990; Yu, 1998; Lynch, 2005].
Here it is suggested the substantially di�erent
method, not requiring the direct reduction to
normal form. The quality of the method suggested
is ideological simplicity and visualization. We
require a less smoothness of the right-hand sides
of di�erential equations in comparison with the
classical consideration. In the present work we
follow ideas, proposed in [Leonov 2006, 2007].

2. COMPUTATION OF LYAPUNOV
QUANTITY

Consider the system
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ẋ = −y + uf (t),
ẏ = x + ug(t).

(1)

Then for a solution with initial data x(0) =
0, y(0) = 0 we have

x = ug(0) cos(t)+

+cos(t)
t∫
0

cos(τ)(u′
g(τ) + uf (τ))dτ+

+sin(t)
t∫
0

sin(τ)(u′
g(τ) + uf (τ))dτ − ug(t)

y = ug(0) sin(t)+

+ sin(t)
t∫
0

cos(τ)(u′
g(τ) + uf (τ))dτ−

− cos(t)
t∫
0

sin(τ)(u′
g(τ) + uf (τ))dτ

(2)

Consider the equation

ẋ = −y + f(x, y)
ẏ = x + g(x, y) (3)

Here f(0, 0) = g(0, 0) = 0 and in a certain
neighborhood of the point (x, y) = (0, 0) the
functions f(·, ·) and g(·, ·) have partial derivative
up to the order 2, and f ′

x(0, 0) = f ′
y(0, 0) =

g′
x(0, 0) = g′

y(0, 0) = 0.



We shall use a smoothness of the functions f and
g and shall follow the �rst Lyapunov method on
�nite time interval [Lefschetz, 1957; Cesari, 1959].

and using the smoothness of the functions f and
g, we can write

f(x, y) = f20x
2 + f11xy + f02y

2 + o((|x|+ |y|)2) =
= f2(x, y) + o((|x|+ |y|)2),

g(x, y) = g20x
2 + g11xy + g02y

2 + o((|x|+ |y|)2) =
= g2(x, y) + o((|x|+ |y|)2).

(4)

Consider the solution

x(t, h) = x(t, x(0), y(0)), y(t, h) = y(t, x(0), y(0))

of system (3) with the initial data

x(0, x(0), y(0)) = 0,
y(0, x(0), y(0)) = h,

(5)

Then for the �rst approximation x1(t, h), y1(t, h)
of the solution x(t, x(0), y(0)), y(t, x(0), y(0)), from
the equation

ẋ1 = −y1, x1(0, h) = 0,
ẏ1 = x1, y1(0, h) = h,

(6)

we obtain

x1(t, h) = −h sin(t), y1(t, h) = h cos(t).

By the assumption on the smoothness of f, g we
obtain that the right-hand side of system (3)
has 2 continuous partial derivatives with respect
to x and y. Then [Hartman, 1964] the solution
of system (3), i.e. x(t, h), y(t, h) have partial
derivative up to the order 2 with respect to the
initial data h.

We shall seek sequential approximations for
x(t, h), y(t, h) in the form of the sum

x2(t, h) = x1(t)h + x2(t)h2, x2(0) = 0,
y2(t, h) = y1(t)h + y2(t)h2, y2(0) = 0,

(7)

where, according to the local Taylor formula, at
�xed moment t = t∗ the following representation
holds

x(t∗, h) = x2(t∗, h) + o(h2),
y(t∗, h) = y2(t∗, h) + o(h2). (8)

Substituting (7) in (4) and then in (3) and
determining the coe�cients ux

2(t) and uy
2(t) of

h2 in f(x1(t, h), y1(t, h)) and g(x1(t, h), y1(t, h))
correspondingly we obtain the following approximations

ux
2(t, h) = ux

2(t)h2,
uy

2(t, h) = uy
2(t)h

2,
(9)

Then for determining x2(t), y2(t) we have the
equation

ẋ2 = −y2 + ux
2(t)

ẏ2 = x2 + uy
2(t).

(10)

Let �nd the solution of (10) by (2).

x2(t) =
1
3
(

2 cos(t)f02 sin(t)− g11 sin(t) cos(t)
−2 sin(t)f20 cos(t) + cos(t)g02

−g20 − g20 cos(t)2 + g02 cos(t)2

+g11 sin(t) + f02 sin(t) + 2 cos(t)g20

− cos(t)f11 − 2g02 − f11 + 2f11 cos(t)2 + 2 sin(t)f20)

y2(t) =
1
3
(

−f02 cos(t)2 + f20 + 2f02 − g11

−g11 cos(t)− 2f20 cos(t) + sin(t)g02

+2 sin(t)g20 − sin(t)f11 + 2g11 cos(t)2

+f20 cos(t)2 − cos(t)f02 + 2g02 cos(t) sin(t)
−2g20 sin(t) cos(t) + f11 sin(t) cos(t))

Here x2(0) = y2(0) = x2(2π) = y2(2π) = 0.

Lemma. Let be

x1(2π) = 0, y1(2π) = 1,
x2(2π) = y2(2π) = 0.

(11)

Then for su�ciently small h the solution x(t, h), y(t, h)
on a phase plane crosses the half-line (x = 0, y >
0) at time

T = 2π + o(h). (12)

Proof.

Since x2(2π, h) = 0 and y2(2π, h) = h, we obtain
that for t = 2π the trajectory (x(t, h), y(t, h)) on
phase plane (8) is in the neighborhood of radius
o(h2) of the point (x = 0, y = h).

For �xed t = t∗, according [Hartman, 1964] and
(8) we have

ẋ(t∗, h) = −h cos t∗ + o(h).

Since ẋ(t, h) bounded with respect to t and h in
a certain neighbourhood of (x = 0, y = h) and
t = 2π, we obtain the relation

ẋ(t, h) ≤ −ch

for su�ciently small h and for t from certain
neighborhood 2π for certain number c > 0. Then

T = 2π + o(h).

�

Consider a function

V (x, y) = x2 + y2. (13)

For the derivative of the function V along the
solutions of system (3) the relation

V̇ (x, y) = 2xf(x, y) + 2yg(x, y) (14)

is valid.

The following notation are needed for the sequel

L = V
(
x(T, h), y(T, h)

)
− V

(
x(0, h), y(0, h)

)
.
(15)



Integrating (14) from 0 to T = 2π+o(h) we obtain

L =
T∫
0

V̇ (x(t, h), y(t, h))dt =

=
2π∫
0

V̇ (x(t, h), y(t, h))dt + o(h4).

Substituting (14), we �nally have

L =
2π∫
0

2x2(t, h)f2(x2(t, h), y2(t, h))+

+2y2(t, h)g2(x2(t, h), y2(t, h))dt + o(h4).
(16)

Substituting x2(t, h), y2(t, h) in f2(x, y), and g2(x, y)
and then in (16) and using terms grouping up to
h4, since we obtain

L = L1h
3 + o(h4). (17)

where L1/2 is the k-th Lyapunov quantity L1.

L1 =
π

4
(

f11f02 + 2f02g02 − 2f20g20 − g11g20 − g11g02 + f11f20)

Here the sign L1 characterizes an unwinding or
a twisting of trajectory of system (x(t, h), y(t, h))
on a phase plane.

We remark that for computing L1 it is su�cient
that in the neighborhood of considered stationary
point the relation f, g ∈ C 2 is satis�ed, what
is one less than conventional assumptions on a
smoothness [Marsden & McCracken, 1976].

3. CONCLUSION

Note also that a wide class of polynomial systems
for which a given technique permits us to construct
small cycles ( see, for example, [Bautin, 1952;
Leonov, 1998; Lloyd & Pearson, 1997; Lynch,
2005; Yu & Han, 2005] and others).
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