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Abstract. 
The paper deals with non-traditional vibration-

driven locomotion systems. In the first part, the 
motion of a chain of interconnected bodies (mass 
points) along a straight line on a rough surface is 
considered. The system is subjected to kinematic 
constraints modeling the excitation mode. It is 
assumed that there is dry (Coulomb’s) friction acting 
between the plane and each body. The magnitude of 
the friction force depends on the direction of the 
motion. The expression for the average velocity of 
the steady-state motion of the system as a whole is 
found. In the second part, the motion of two bodies 
(mass points) connected by a linear spring is studied 
for the case, where the coefficient of friction is 
independent of the direction of the motion. The 
system is driven by two unbalanced rotors attached 
to the bodies. It is shown, that the direction of 
motion can be reversed without changing the 
direction of rotation of the rotors. 
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1 Introduction 
The motion of a system of rigid bodies connected 

in series by viscoelastic elements along a straight 
line on a rough plane was studied by a number of 
authors. Dry (Coulomb’s) friction was assumed to 
act between the bodies and the plane, with the 
normal force exerted on the bodies by the plane 
remaining constant. The excitation of the motion of 
the system was due to the forces acting between the 
points and changing periodically in time. The 
friction was assumed to be asymmetric, i.e., the 
coefficient of friction between a body and the plane 
depended on the direction of motion of the body. 
The asymmetry can be provided, for example, by 

applying scales or spikes to the contact surface of 
the constituent bodies [Miller, 1988; Steigenberger, 
1999]. 

In [Zimmermann et al., 2002; 2004a; 2007] and 
[Bolotnik et al., 2007], the dynamics of a system of 
two bodies joined by a linearly elastic element was 
studied. The motion was excited by a harmonic 
force acting between the bodies. In [Zimmermann 
et al., 2004b], a system with an elastic element 
made from a magnetizable polymer, the motion of 
which was excited by a magnetic field, was 
considered. In the case of small friction, an 
analytical expression for the average velocity of the 
steady-state velocity-periodic motion of the system 
was found. The motion of the system with this 
velocity was shown to be stable. A similar 
investigation was performed for a system of two 
bodies joined by a spring with a nonlinear (cubic) 
characteristic [Zimmermann et al., 2007; Bolotnik 
et al., 2007]. Algebraic equations for the average 
velocities of the steady-state motion were obtained. 
There exist up to three different steady-state modes 
of motion, of which at most two can be stable. The 
limiting case of non-symmetric friction was 
modeled by the kinematic condition that allowed 
the motion only in one direction.  

In [Bolotnik et al., 2006], the rectilinear motion on 
a horizontal rough plane was considered for a 
vibration-driven system consisting of a main body 
(housing), which interacted directly with the plane, 
and of internal masses that performed harmonic 
oscillations relative to the housing. The vertical and 
horizontal oscillations of the internal masses had 
the same frequency but were shifted in phase. It 
was shown that by controlling the phase shift of the 
horizontal and vertical oscillations, it is possible to 
change the velocity of the steady-state motion of 
the housing, use scales or spikes to provide non-
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symmetric friction being unnecessary. In 
[Chernousko, 2005; Chernousko, 2006], the 
rectilinear motion of a body with a movable internal 
mass moving along a straight line parallel to the 
line of the motion of the body on a rough plane was 
investigated. A periodic control mode was 
constructed for the relative motion of the internal 
mass to provide a velocity-periodic motion for the 
main body with maximal average speed. 

In the first part of the present paper, we consider 
the rectilinear motion along a rough plane of a 
chain of identical point masses. The motion of the 
system is excited kinematically, precisely, the time 
history of the distance between the neighboring 
points is prescribed. Friction between the plane and 
the mass points is assumed to be dry friction 
modelled by Coulomb’s law. The coefficient of 
friction depends on the direction of motion. In the 
second part, a system of two bodies connected by a 
linear spring is considered. The motion is excited 
by two unbalance vibration exciters located on the 
bodies. The rotors of the vibration exciters rotate 
synchronously in the same direction. The 
coefficient of dry friction between the bodies and 
the supporting plane is independent of the direction 
of the motion. 

2 The motion of a chain of mass points along a 
straight line on a rough plane 

Consider a chain of  identical point bodies of 
mass  arranged in a line (Figure 1). The system is 
allowed to move on a horizontal plane along a 
straight line designated by the coordinate x and 
coinciding with the line of the chain. Let 

 denote the coordinate of the i-th 
body relative to a fixed reference frame. The 
motion of the system is excited kinematically, 
precisely, the distance between the neighboring 
points is prescribed as an explicit function of time 

n
m

( nixi ,,1K= )

t : . We assume 
non-symmetric (anisotropic) dry Coulomb’s friction 
force  to be exerted on the points by the 
supporting plane. Let  and  ( ) denote 
the coefficients of friction resisting the forward and 
backward motion, respectively. 
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Figure 1.  The chain with  mass points. n

Let v  denote the velocity of the center of mass of 
the system, i.e., 
 

( ) nxxv n&K& ++= 1  
 

Newton’s second law for the center of mass of the 
chain is represented by the equation 
 

( ) ( nxFxFvmn &K&& + )+=⋅ 1  (1) 
 
with vnxx n =++ &K&1 . 
We take into account 1−n  kinematic constraints 
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We assume that all ( ) ( ) tbLtLtLi ωsin0 ⋅+==  
and proceed to the dimensionless variables (labeled 
by the asterisk) 
 

( ) ( )

2

**

*
*
0

0

**

,1,1,,1,,

,,,,

ω
εμω

ω

⋅
⋅

=≤=−==
⋅

=

====

−

−

+

−−

b
kg

k
k

ni
b
LL

b
VV

tt
kgm

F
F

kgm
xF

xF
b
x

x i
i

i
i

K

&
&

 

 
where g  is the acceleration due to gravity. To 
investigate the motion of the system under 
consideration we will use the asymptotic technique. 
To that end we assume the parameter ε  to be 
small. This means that for each mass point, the 
maximum acceleration due to friction is much 
lower than the maximum acceleration due to the 
prescribed relative motion of the points. With 
reference to (2), equation (1) can be reduced to the 
form 
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Average the right-hand side of this equation with 

respect to t to obtain the equation of the first 
approximation according to the method of 
averaging [Bogoljubow and Mitropolski; 1965]. We 
will be interested in the steady-state solution of the 
averaged equation. To find the steady-state values 
of the velocity v one should calculate the roots of 
the averaged right-hand side of equation (3). The 
steady-state velocity of the averaged equation can 
be regarded as an approximation to the average 
velocity of the center of mass of the chain. For the 
chains comprising from 2 to 5 mass points, the 
velocity corresponding to the steady-state solution 
of the averaged equation is expressed as follows: 
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where  is an arbitrary constant; sv
( )( ) ( )( )31arcsin2331arcsin2 +−= ππϑ . 

To investigate the dependence of the steady-state 
velocity  on the parameter v μ , characterizing the 
degree of anisotropy of friction, calculate the 
derivative of  with respect to v μ  as a derivative of 
an implicit function. For fixed  we thus obtain n
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where [ ]2np =  is the integer part of 2n . 
Therefore, the steady-state velocity  decreases as v
μ  increases, i.e., the less the relative difference 
between the coefficients of friction  and , the 
lower the velocity . 
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Figure 2.  Velocity v  versus μ  for various . n

Figure 2 plots the dimensionless steady-state 
velocity  versus the ratio v 1≤= −+ kkμ  for chains 
of various lengths. The corresponding number of 
mass points  labels the respective curve. n

3 Two-body system with unbalance vibration 
exciters 

Consider the rectilinear motion along a rough 
plane of two identical bodies of mass M  connected 
by a spring of stiffness . To each of the bodies an 
unbalance vibration exciter is attached. The exciter 
is designed as a rigid rotor the axis of which is 
fixed to the body and is perpendicular to the 
vertical plane passing through the line of motion of 
the system. The center of mass of the rotor does not 
lie on the axis of rotation. Let 

c

x  designate the 
coordinate along the line of motion of the system. 
Both rotors have the same mass  and the same 
distance  between the center of mass and the axis 
of rotation. Let  and  denote the coordinates 
measuring the displacements of the constituent 
bodies of the system. We assume isotropic 
Coulomb’s dry friction with coefficient  to act 
between the supporting plane and the bodies. The 
system is driven by the vibration exciters that rotate 
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synchronously at the same angular velocity ω  in 
the same direction with a phase shift of . The 
system under consideration is depicted in Figure 3. 

0ϕ

 
Figure 3.  System with two unbalanced rotors. 

Introduce the dimensionless variables and 
parameters (labeled with the asterisk) 
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Here  is the maximal value of the 
friction force acting on each of the bodies, the 
parameter  characterizes the maximal elongation 
of the spring and, accordingly,  characterizes 
the maximal value of the spring force. We assume 
that

( ) gkMm +

a2
ac 2

1<<ε . The value of the characteristic (steady-
state) amplitude is unknown beforehand. For this 
reason, we can set the value  arbitrarily, for 
example, . After determining the steady-
state amplitude, it should be verified that the elastic 
force is in fact much larger than the friction force 
(to justify the hypothesis that 

a2
la =2

1<<ε ). 
The dimensionless equations of motion have the 

form 
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The quantities  represent the normal pressure 
forces exerted on the body by the supporting plane. 
Since the plane resists penetration but does not 
resists separation of the bodies, these quantities 
must be nonnegative. To guarantee this condition 
we assume . 

in

12 ≤να
Introduce new variables: the velocity of the 

center of mass, ( ) 221 xxV && += , and the deviation 
of the bodies from their common center of mass, 

( ) ϕcos212 axxz =−= . To investigate the motion 
of the system in the neighborhood of the main 
resonance, we assume Δ+= εν 2 , where  is a 
constant quantity that has an order of unity. After 
transforming system (4) to the standard form by 
introducing the slow variable 

Δ

ϕϕνψ −+= 20t  
and applying the procedure of averaging with 
respect to the fast variable ϕ  we obtain 
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We are interested in the velocity-periodic steady-

state motion of the system as a whole. The steady-
state solution of the averaged equations of motion, 
corresponding to constant V , can serve as an 
acceptable approximate model for the steady-state 
motion of the basic system. Accordingly, the 
velocity corresponding to this solution can be used 
as an approximation to the average velocity of the 
basic system. If the velocity V  according to the 
averaged equation is constant, the amplitude  is 

also constant. Introduce the variables 

a

2a
Vu =  and 

2
sin 0ϕ

γ =  and eliminate ψ  from the averaged 

equations to obtain the system of algebraic 
equations for the steady-state solution 
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Although the detailed analysis of the nonlinear 

system of equations (5) is complicated, one can 
draw an important conclusion. Let (  be a 
solution of the system of equations (5) for a given 
set of parameters ( )

 
Figure 4.  The prototype of the vibration driven system. 

This model has the following parameters: 
kgM 12.0= , kgm 03.0= , , ml 015.0=
mNc 130= , 1.0=k . Natural frequency of the 

system 1
0 4.442 −== sn ωω , excitation 

frequency , the dimensionless parameters 150 −= sω
17.0=α , 066.0=ε , 7.2=Δ . For πϕ =0  the 

dimensionless auV 2=  found from system (5) is 
approximately equal to 0.17. From the numerical 
solution of the exact equation (4) it follows that the 
average velocity of the steady-state motion of the 
system is close 0.2, which demonstrates good 
agreement with the value . The 
corresponding dimensional value is 

17.0≈V
smV 08.0≈ . 

The velocity corresponding to πϕ =0  is maximal. 

)00 , au

Δ,,, kαγ . Then  is a 
solution for the set of parameters 

( )00 , au−
( )Δ−,,, kαγ . 

Hence, one can control the direction of motion of 
the system by changing the resonant detuning Δ  in 
sign. We performed numerical calculations for the 
experimental model of the vibration-driven system 
shown in Figure 4. 

4 Conclusion 
For the chain of interconnected bodies, the steady-

state velocity is studied as a function of the number 
of bodies in the chain and the relative difference of 
the coefficients of friction resisting the forward and 
backward motion. If the constituent bodies of the 
chain harmonically oscillate relative to each other, 
the average velocity of motion of the system as a 
whole decreases as the relative difference of the 
friction coefficients decreases. 

For the system of two bodies connected by a linear 
spring and excited by unbalanced rotors, the 
direction of motion can be reversed by changing the 
difference between the natural frequency of the 
system and the angular velocities of the rotors in 
sign. The change in the direction of rotation of the 
rotors is not required. The magnitude of the velocity 
of the motion can be controlled by changing the 
phase shift between the rotations of the rotors. 

An experimental model of the vibration-driven 
system with unbalance vibration exciters was 
designed and constructed. 
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