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Abstract
The consideration was given to the damping of peri-

odic vibrations acting on vibration protected plant us-
ing a hydraulic support with active control. A nonlin-
ear robust-adaptive repetitive control system was syn-
thesized for the technical plant under consideration. The
author uses a piezoelectric accelerometer to measure act-
ing vibrations, the generator for periodic signals to com-
pensate for repetitive force action and the hyperstability
criterion to synthesize a control algorithm. In the final
section it was present a computational experiment whose
results clearly illustrate the quality of the obtained con-
trol system.
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1 Introduction
The problems of compensating for external distur-

bances that affect the operation processes of various
technical plans are among the relevant issues of mod-
ern automatic control theory and practice [Bui and Mar-
gun, 2022; Nguyen et al., 2022; Tsykunov, 2010; Furtat,
2013; Quoc et al., 2021; Izrailovich and Grishaev, 2012;
Andrievsky and Furtat, 2020a; Andrievsky and Furtat,
2020b]. Reducing unwanted vibrations in machines and
mechanisms is an important application associated with
solving such problems. In this context, the main prior-
ity is to develop methods for damping external repetitive
disturbances that result from kinematic or force effects
on the vibration protected plant, which cause an increase
in the intensity of its forced vibrations.

To measure external vibrations, it is necessary to use
various measuring transducers (sensors), whose qual-

ity characteristics directly affect the system’s perfor-
mance. Nowadays, there is a wide range of measuring
devices available that can measure vibration displace-
ments across a broad spectrum of frequencies and am-
plitudes with varying degrees of accuracy. The choice of
sensors primarily depends on the specific problem being
solved. Both optical and piezoelectric sensors are widely
used for constructing vibration damping and control sys-
tems.

Optical sensors have proven effective for measuring
both fairly large oscillations with an amplitude of 0.5
mm (optical wedges) and small amplitudes of several
micrometers (interferometers and lasers). The main ad-
vantages of these sensors are the absence of inertia and
simplicity of design. However, the use of optical con-
verters requires an additional power source and, in some
cases, a photocell, which may not always be feasible to
install.

These disadvantages are absent in accelerometers,
which are built using the piezoelectric effect in crys-
tals, ceramics or films and convert mechanical energy
into electrical [Johnson et al., 1980]. In particular, they
generate an electrical signal that is proportional to the
acceleration of the measured vibrations. These sensors
do not require an auxiliary power supply, possess a sim-
ple design, linear characteristics, wide dynamic operat-
ing ranges, and high operational reliability. Unlike opti-
cal sensors, accelerometers have an inertia, which must
be considered when developing algorithms for control
devices. Piezoelectric sensors find extensive application
in the construction of various vibration control systems.

In most practical cases developers use active vibration
damping systems to reduce external cyclic loads. These
systems generate control signals that are calculated us-
ing feedback and applied to one or several parts of the
protection plant. An example of such a control sys-
tem is a hydraulic vibration support with active control
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[Izrailovich and Grishaev, 2012]. The known to-date re-
sults have made it possible to improve the quality of vi-
bration protection systems of the indicated class. But the
problem of constructing universal control laws that guar-
antee high quality for plants with previously unknown
parameters remains open.

From the perspective of control theory, the problem of
reducing for unwanted vibrations should be considered
as a problem of stabilization of a priori uncertain plants
relative to a certain balance position [Bui and Margun,
2022; Nguyen et al., 2022; Eremin and Shelenok, 2011].
At the same time, methods of adaptive and robust con-
trol are most advisable for designing feedback loop al-
gorithms. [Bui and Margun, 2022; Nguyen et al., 2022;
Eremin and Shelenok, 2011; Eremin et al., 2021; Pik-
ina and Pashchenko, 2021]. Using these approaches, it
is possible to develop algorithms that ensure sufficiently
good control system performance within a fairly wide
range of uncertainty in the controlled plant. At the same
time, a notable method for developing control systems
for uncertain plants is the hyperstability criterion pro-
posed by V. M. Popov [Popov, 1973].

The construction of control loops based on the hy-
perstability criterion requires special approaches for
plants whose mathematical models have a relative degree
greater than one. One such method is including a high-
speed correction filter in the main system’s loop. This
method allows us to develop control systems with a rela-
tively simple structure for non-strictly minimal phase dy-
namic plants for fulfilling the special L-dissipativity con-
ditions [Eremin and Shelenok, 2023; Shelenok, 2023;
Eremin et al., 2022].

The article discusses the construction of a system
for damping forced vibrations in a vibration protected
plant using a hydraulic support, for which a combined
adaptive-robust controller is synthesized. The solu-
tion methods involve the hyperstability criterion and L-
dissipativity conditions. A direct-conversion microme-
chanical accelerometer is used for measuring vibration
displacements.

2 Preliminaries
Let us consider the general structure of a vibration

damping system with active hydraulic support depicted
in Fig. 1 [Izrailovich and Grishaev, 2012].

Vibration Protected 
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Figure 1. Scheme of the hydraulic support control system.

The mathematical model of this vibration support sys-
tem is described using the following equations:

m0
d2y(t)

dt2
+ cry(t) = F (t)−Ap1(t),

p1(t)− p2(t) = A

(
L
d2y(t)

dt2
+ δ

dy(t)

dt

)
,

Ep2(t)−Ay(t) =
E

S
u(t).

where m0 is the mass of the protected plant; A is the
piston area; cr is the stiffness of the passive damping
element; p1(t) is the pressure in main hydraulic cham-
ber ; δ is the linear hydraulic resistance; S is the mem-
brane cross-sectional area; Lg is the hydraulic inertia;
p2(t) is the pressure in additional hydraulic chamber;
E is the capacity of the additional hydraulic chamber;
F (t) = B sin (φt) is an external periodic force distur-
bance, B,φ = const > 0; y(t) represents the displace-
ment of the protection plant; ỹ(t) represents the mea-
sured vibrations; u(t) represents the control action ap-
plied to the additional hydraulic chamber.

Let us express p2(t) using the last equation provided:

p2(t) =
A

E
y(t) +

1

S
u(t).

Next, we can define p1 by substituting the resulting ex-
pression into the second equation:

p1(t) = LgA
d2y(t)

dt2
+ δA

dy(t)

dt
+

A

E
y(t).

Thus, we describe the dynamics of the active hydraulic
support as follows:

(
m0 + LgA

2
) d2y(t)

dt2
+ δA2 dy(t)

dt
+

+

(
cr +

A2

E

)
y(t) = F (t)− A

S
u(t),

(1)

It is possible to represent model (1) as follows:

WHS(s) =
y(s)

u(s)
=

1

a1s2 + a2s+ a3
, (2)

where WHS(s) represents the transfer function of hy-
draulic support; s is the complex variable; y(s) and u(s)
are the Laplace transforms of the output signal y(t) and
input signal u(t), respectively;

u(t) = F (t) + bu(t), b = −A

S
,

a1 = m0 + LgA
2, a2 = δA2, a3 =

(
cr +

A2

E

)
.

(3)
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We connect a direct-conversion micromechanical ac-
celerometer to the output of the protection plant to mea-
sure its movement amplitude. It is well known [John-
son et al., 1980] that model of this sensor can be repre-
sented as a series connection of the transfer function for
a sensing element, the transfer function for a displace-
ment transducer, and the transfer function for a low-pass
filter [Johnson et al., 1980]:

WMA(s) =
Uout(s)

y(s)
=

=
mUrvKyKf

h0(T 2
y s

2 + 2ζyTys+ 1)(T 2
f s

2 + 2ζfTfs+ 1)
,

(4)

where Uout(s) represents the Laplace transform of the
sensor output Uout(t); m is the mass of the sensing el-
ement; Urv is the internal reference voltage; Ky is the
sensing element gain; Kf is the low-pass filter gain; h0

is the gap between movable and stationary parts of the
sensor; Ty =

√
m/Gy is the time constant of the sens-

ing element; Gy is the linear rigidity of the sensing ele-
ment suspension; ζy is the damping coefficient for oscil-
lations of the sensitive element; Tf i is the time constant
of the low-pass filter; ζf is the damping coefficient for
oscillations of the low-pass filter.

A generalizes transfer function for the control plant
(CP) can be represented as follows:

WCP (s) = WHS(s)WMA(s) =

Uout(s)

u(s)
=

α(s)

β(s)
, α(s) = K,

β(s) = h0

(
a1s

2 + a2s+ a3
)
×

×(T 2
y s

2 + 2ζyTys+ 1)(T 2
f s

2 + 2ζfTfs+ 1),

(5)

where K = mUrvKyKf ; β(s) is the polynomial with
an arbitrary roots.

Since the degree of transfer function (5) is ρ =
= deg β(s) − degα(s) = 6 to construct an operable
system, we connect a fast-acting dynamic correction fil-
ter (DCF) to the output of (5), similarly to [Eremin and
Shelenok, 2023; Eremin et al., 2022], with the following
description

WDCF (s) =
yml(s)

Uout(s)
=

δ(s)

γ(s)
=

(
Ts+ 1

T0s+ 1

)5

, (6)

where yml(s) represents the Laplace transform of the
system’s main loop output signal yml(t); δ(s) and γ(s)
are Hurwitz polynomials; T and T0 are time constants;
T0 is sufficiently small.

The serial connection of (5) and (6) has the following
form:

yml(s) = WCP (s)WDCF (s)u(s) =

= K
1

β(s)
· δ(s)
γ(s)

u(s) = K
δ(s)

β(s)
· 1

γ(s)
u(s).

In this case if we set a small value for the time constant
T0 ≪ 1, then there will be a fair relation

1

γ(s)
=

1

(T0s+ 1)
5
∼= 1.

Consequently, we can replace the actual connection
model of CP and DCF with the following approximate
model

yml(s) ∼=
Kδ(s)

β(s)
u(s). (7)

The mathematical model of this system, incorporat-
ing equations (1)-(5) and (7) in state-space form, is de-
scribed as follows:

dx(t)

dt
= Ax(t) + bb̃u(t) + f(t),

yml(t) = gTx(t), x(0) = x0,

(8)

where x(t) ∈ R6 is the state vector; x0 represent the
vector of initial conditions; A, b and f(t) are state ma-
trix, control and external perturbations vector, respec-
tively, having following structure:

A =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
β1 β2 β3 β4 β5 β6

 , b =


0
0
0
0
0

b̃

 ,

fT (t) =
(
0 0 0 0 0 f6(t)

)
,

(9)

β1 =
a7
a1

, β2 =
a6
a1

, β3 =
a5
a1

, β4 =
a4
a1

,

β5 =
a3
a1

, β6 =
a2
a1

, b̃ = Kb,

a1 = a1h0T
2
y T

2
f ,

a2 = h0 {TyTf [2a1 (Tyζf + Tfζy) + a2]} ,
a3 = h0{a1

[
T 2
y + 4TyTfζyζf + T 2

F

]
+

+TyTf [2a2 (Tyζf + Tfζy) + a3TyTf ]},
a4 = h0[2a1 (Tyζy + TF ζf ) + a2(T

2
y + 4TyTfζyζf+

+T 2
f ) + 2a3TyTf (Tyζf + Tfζy)],

a5 = h0[a1 + 2a2 (Tyζy + Tfζf ) +

+a3
(
T 2
y + 4TyTfζyζfT

2
f

)
],

a6 = h0 [a2 + 2a3 (Tyζy + Tfζf )] , a7 = h0a3,

f6(t) = KF (t).

We determine the coefficients of a time-invariant vector
gT =

(
g1 g2 g3 g4 g5 g6

)
which forms the output signal
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yml(t) from the following relations

g(s) = g6s
5 + g5s

4 + g4s
3 + g3s

2 +

+g2s+ g1 =
δ(s)

a1
=

(Ts+ 1)
5

a1
,

g1 =
1

a1
, g2 =

5T

a1
, g3 =

10T 2

a1
, g4 =

10T 3

a1
,

g5 =
5T 4

a1
, g6 =

T 5

a1
.

(10)

We describe a priori uncertainty conditions for the con-
sidered model (8) – (10) as follows:

A = A(ξ), b = b(ξ), g = g(ξ), f = fξ(t), (11)

where ξT =
(
m m0 Urv Ky Kf Ty Tf ζy ζf h0

)
is

the vector of unknown parameters whose values belong
to the known bounded numerical setΞ.

3 Problem Statement
Let us generate the required trajectory for the CP’s out-

put y(t) with a command signal r(t) (tracking mode). If
we aim to maintain the balance of CP, then command
signal will be r(t) = r∗ = const ≥ 0 (stabilization
mode). We will use the dynamic unit (command correc-
tion filter, CCF), equivalent to the DCF model, to set the
required dynamics of the main control loop

r̃(s) = WDCF (s)r(s) =

(
Ts+ 1

T0s+ 1

)5

r(s), (12)

where r̃ represents the Laplace transform of some addi-
tional command signal r(t) (output of the CCF).

The two control goals need to be formulated.

1. Main control goal: it is necessary to ensure the
high-precision processing of the reference signal
r(t). This requirement entails achieving the follow-
ing condition:

lim
t→∞

|r(t)− y(t)| ≤ ∆, ∆ = const > 0; (13)

2. Auxiliary control goal: it is necessary to synthe-
size an explicit form of the control law u(t) =
= u(yml(t), r(t)) that ensures the fulfillment of the
following inequality

lim
t→∞

|y∗(t)− yml(t)| ∼=
∼= lim

t→∞
|r̃(t)− yml(t)| ≤ ∆ml,

∆ml = const > 0,

(14)

for any initial conditions x0, bounded disturbances
|F (t)| ≤ F0, F0 = const > 0 and under a given
level of uncertainty ξ ∈ Ξ.

In equations (13) and (14): ∆ is a small constant cor-
responding to the specified tracking accuracy (for CP);

∆ml is a small value corresponding to the maximum
permissible tracking error (for a system’s main control
loop); y∗(t) represents an output signal of the implicit
reference model [Eremin et al., 2021]

y∗(t) =
1

χ−1p+ 1
r̃(t) =

χ

p+ χ
r̃(t), (15)

p = d/dt; χ = const > 0. In addition, for χ ≫ 0 model
(15) can be represented as:

y∗(t) ∼= r̃(t). (16)

Thus, if we ensure the auxiliary objective (14) through
the synthesis of feedback algorithms, then the main con-
trol goal (13) will be achieved in the control system.

4 Main Results
We need to make one important remark before the syn-

thesis procedure begins. When we consider a serial con-
nection of CP and DCF (7), we will use an analogue of
the reference model (15), which has the following equiv-
alent form:

y∗(t) =
χg(p)g6

(p+ χ) g(p)g6
r̃(t) =

=
χ̂g(p)g6

(p+ χ) g(p)
r̃(t), χ̂ = χg−1

6 .

(17)

The reference model (17) can be represented in the fol-
lowing state-space form:

dx∗(t)

dt
= A∗x

∗(t) + bχ̂r̃(t),

y∗(t) = gTx∗(t), x∗(0) = 0,

(18)

where x∗(t) ∈ R6 is the reference state vector, and
A∗ = A − bχgT is the Hurwitz matrix of the appro-
priate size.

Let us consider the deviation between the reference
states and the internal states of the modified plant (7):
e(t) = x∗(t) − x(t). In this case, with respect to (18)
and (8), we can write down a description of the equiva-
lent system’s model as follows:

de(t)

dt
= A∗e(t) + bµ(t), v(t) = gTe(t) =

= y∗(t)− yml(t) ∼= r̃(t)− yml(t),

µ(t) = χ̂r̃(t)− χyml(t)− b̃u(t)− f6(t),

(19)

where µ(t) represents a modified control signal; v(t)
represents a modified output signal.

We will satisfy the requirements of the hyperstability
criterion, which involves resolving two positivity prob-
lems. In other words, we must provide conditions that
guarantee the validity of two relations:
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1. The frequency inequality for the linear time-
invariant part (LSP) of the system (19)

Re
[
gT (jωE−A∗)

−1
b
]
> 0, ∀ω ≥ 0, (20)

where E is the identity matrix of appropriate size;
2. The integral inequality for the nonlinear non-

stationary part (NNP) of (19).

η(0, t) = −
∫ t

0

µ(ς)v(ς)dς ≥ −η20 ,

η20 = const, ∀t > 0.

(21)

IIn the present case, the transfer function of the sys-
tem’s LSP (19) coincides with the description of a first-
order aperiodic link W (s) = gT (sE−A∗)

−1
b =

1

χ−1s+ 1
, for which condition (20) always holds.

Therefore, we need to determine conditions (by synthe-
sizing an explicit form of controller) that will ensure the
inequality (21) holds

To achieve this, we represent the control signal as
u(t) = u1(t) + u2(t). Taking into account a signal µ(t)
from (19), we can write down a left-hand side of the in-
tegral inequality (21) as follows:

η(0, t) = b̃

∫ t

0

(u1(ς)− θ(ς)) v(ς)dς+

+

∫ t

0

(
b̃u2(ς) + χyml(ς)

)
v(ς)dς =

=

2∑
i=1

ηi(0, t),

(22)

where θ(t) = b̃−1 (χ̂r̃(t) + f6(t)) represents a periodic
signal.

We define the explicit form of u1(t) as follows:

u1(t) = u1(t− T ) + γ1v(t), u1(h) = 0,

h ∈
[
−T ; 0

]
, T , γ1 = const > 0.

(23)

Then for the first term in (22), we can obtain the follow-
ing estimate [Eremin, 2003]:

η1(0, t) = γ1b̃

∫ t

0

v(ς)×

×
[∫ ς

0

ω0(ς − ϑ)v(ϑ)dϑ− θ(ς)

]
dς ≥ η201,

η01 = const, ∀t > 0,

(24)

where ω0 (·) represents the pulse transient function of the
generator for periodic signals with the transfer function

W (s) =
1

1− e−sT
.

Let us synthesize u2(t) in the following combined
form

u2(t) = γ21yml(t)

∫ t

0

yml(ς)v(ς)dς+

+γ22y
2
ml(t)v(t),

γ21 = γ̃21b̃
−1, γ22 = γ̃22b̃

−1,

γ̃21, γ̃22 = const > 0.

(25)

In this case we can estimate the second term from (22)
as follows:

η2(0, t) =

=

∫ t

0

(
b̃u2(ς)v(ς) + χyml(ς)v(ς)

)
dς =

= γ̃21

∫ t

0

yml(ς)

∫ ς

0

yml(ϑ)v(ϑ)dϑς +

+γ̃22

∫ t

0

(yml(ς)v(ς))
2
dς +

+χ

∫ t

0

yml(ς)v(ς)dς =

=
γ̃21
2

(∫ t

0

yml(ς)v(ς)dς

)2

+

+γ̃22

∫ t

0

(yml(ς)v(ς))
2
dς +

+χ

∫ t

0

yml(ς)v(ς)dς ≥

≥ γ̃21
2

(∫ t

0

yml(ς)v(ς)dς

)2

+

+χ

∫ t

0

yml(ς)v(ς)dς ±
χ2

2γ̃21
≥ − χ2

2γ̃21
= −η202,

η02 = const, ∀t > 0.

(26)

The obtained estimates (24) and (26) ensure the va-
lidity of the integral inequality (21). At the same time,
a technically feasible control law, ensuring achievement
of both the auxiliary (14) and the main (13) control ob-
jectives, while considering (23) and (25), and accounting
for the high speed of the DCF (6) (as per [Khalil, 2002]),
due to the small value of T0, will be explicitly formulated
as follows:

u(t) =
(
u1(t− T ) + γ1v(t)

)
+

+γ21sat (yml(t))

∫ t

0

sat (yml(ς)) v(ς)dς+

+γ22sat
(
y2ml(t)

)
v(t).

(27)

Therefore, if conditions (20) and (21) are satisfied, the
equivalent system (19), (27), and consequently the mod-
ified system (8), (9) will be hyperstable within a spec-
ified range of uncertainty. If we choose the time con-
stant T0 to be small according to certain conditions, then
the system (1)–(6), (12) with the synthesized control law
(27) will be L-dissipative and maintain operability dur-
ing structural ignition.
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5 Simulation Example
To illustrate the effectiveness of the system (1)–(6),

(12)–(27), let us consider the problem of compensating
external harmonic disturbances in a vibration protected
plant using hydraulic support (1)–(3). The initial data
are as follows [Izrailovich and Grishaev, 2012]:

m0 = 1; LA2 = 0.5,

(
cr +

A2

E

)
= 1,

δ = 3, A = 0.1, S = 0.3.

(28)

We set the parameters of a piezoelectric vibration
transducer (4) according to [Johnson et al., 1980] with
the following values:

m = 0.2 · 10−3, Urv = 5, h0 = 2 · 10−5,

Ky = 6.34 · 10−4, Ty = 3.55 · 10−4,

ζy = 15.28, Kf = 3.5,

Tf = 5.61 · 10−3, ζf = 0.707.

(29)

To ensure a stable balance position for the vibration
protected plant, we define the system’s command (refer-
ence) signal as a constant value

r(t) = r∗ = 0, (30)

and simulate the system with initial data (28) – (30) un-
der varying amplitudes of the external disturbance

F (t) = Bsin(φt), B = const > 0, φ = 2. (31)

During a series of computational experiments, we se-
lected the numerical values for the parameters of the
combined controller (27) and dynamic correctors (6),
(15) as follows:

γ1 = 15 · 102, γ21 = 104, γ22 = 103,

T = 2 · 10−2, T0 = 7 · 10−4, T = 0.2.
(32)

The dynamic characteristics of the control system, as
depicted in Fig. 2 and 3, indicate that the nonlinear repet-
itive control law (27), with specified parameters, main-
tains a stable equilibrium position of the vibration pro-
tected plant by compensating for harmonic disturbances
of varying amplitudes through control signals applied to
the active element of the hydraulic support.

It should be noted that as the amplitude of active dis-
turbances increases, the main target condition (13) is
achieved with good accuracy and speed. In particular,
the control error in steady-state mode does not exceed
0.2% in all cases (initially, the error does not exceed
5.5%), and transient processes are completed within 7
seconds from the start of system operation.
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Figure 2. Control error at different values of the external disturbances
amplitude.

Another important feature of the system is its ability to
maintain operational efficiency and high performance in-
dicators while compensating for disturbances with vary-
ing amplitudes (Fig. 4), frequencies (Fig. 5), or both
parameters (Fig. 6).

6 Conclusion
A solution is proposed for damping forced vibrations

in a vibration protection system using hydraulic support
with active control. The author used a direct-conversion
micromechanical accelerometer as a sensor to measure
vibration displacements. The hyperstability criterion and
a method for designing L-dissipative dynamic systems
were used to synthesize the nonlinear feedback algo-
rithms.
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Figure 3. External perturbation with different amplitudes and respec-
tive control signals.
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Figure 4. Control error at disturbance with changing amplitude.
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Figure 5. Control error at disturbance with changing frequency.
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Figure 6. Control error at disturbance with both changing amplitude
and frequency.

This approach allows us to design a combined vi-
bration damping system. The quality of this system
is demonstrated by the computational experiments that
have been conducted.
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