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Abstract:- We study the variation in the Landé g-factor of electron spins induced by an
anisotropic gate potential in InAs quantum dots for potential use as non-charge based logic
devices. In this paper, we present the numerical simulations of such spins in an electrostati-
cally confined two-dimensional asymmetric gate potential forming a quantum dot system in a
2DEG. Using numerical techniques based on finite element method, we show that the broken
in-plane rotational symmetry, only due to Rashba spin orbit coupling in an asymmetric po-
tential (induced by gate voltages) leads to cover wide range of E-field and B-field tunability
of the electron g-factor.

1 Introduction

The notion of manipulating single electron spins through active modification of the spin-orbit
interaction in a quantum dot formed in the plane of a two dimensional electron gas (2DEG)
has received considerable attention for potential use in non charge-based logic devices and
solid state quantum computing [1, 2]. Such research is of interest in that it might enhance
the possibilities of next generation spintronic logic devices based on CMOS technology [3, 4].

Rashba [5] and Dresselhaus [6] spin orbit couplings are the key parameters in controlling
the electron spins in a quantum dot. The Rashba spin orbit coupling arises from the structural
inversion asymmetry of the quantum well confining potential along z-direction, while bulk
inversion asymmetry gives rise to the Dresselhaus spin orbit coupling. The mathematical
expressions for these interactions are given in Eqs. 4, 5 and 6 [7, 8].

It is also generally understood that the Zeeman spin splitting energy depends on the
direction of an applied magnetic field and is described by the electron g-factor tensor [9, 10].
In the present work we only consider magnetic fields normal to the 2DEG, so the g-factor
tensor reduces to a scalar. In several recent works, anisotropy effects in coupled quantum
dot systems were explored [11, 12]. However, our methodology is different in such a way that
we utilize the finite element method and study the g-factor in InAs quantum dots for both
isotropic and anisotropic gate potentials.

We now turn to a discussion of our model, followed by a brief description of our compu-
tation method.
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Figure 1: In plane wave
functions for quantum dots
formed by (a) symmet-
ric quadratic potential with
α = β = 1, and (b) asym-
metric quadratic potential
with α = 1, β = 9. In both
cases, we choose ℓ0 = 30
nm, E = 105 V/cm, and B
= 1 T.

2 Theoretical Model

We consider the motion of the electron in the x− y plane of the quantum dot in the presence
of a magnetic field oriented along z-direction. Thus the total Hamiltonian can be written as:

H = Hxy +Hz +Hso, (1)

where Hz corresponds to the motion of the electron in a quantum dot normal to the interface,
Hso is the spin-orbit interaction and the remaining term is given by:

Hxy =
P⃗ 2

2m
+

1

2
mω2

o(α
2x2 + β2y2) +

1

2
goµBσzB, (2)

where the kinetic momentum operator: P⃗ ≡ p⃗+ e
c A⃗ is the sum of the canonical momentum:

p⃗ ≡ −ih̄(∂x, ∂y, 0), and the vector potential (in the symmetric gauge) A⃗ ≡ B
2 (−y, x, 0).

The Hamiltonian associated with Rashba and Dresselhaus spin-orbit interactions can be
written as: [7]

Hso = HR +HD1 +HD2, (3)

where the Rashba interaction [5] is given by:

HR =
αReE

h̄

(
σxPy − σyPx

)
, (4)

and the linear and cubic Dresselhaus interactions [6, 13] are written as:

HD1 =
0.7794γck

2

h̄

(
−σxPx + σyPy

)
, (5)

which is linear in components of the momentum operator P⃗ and

HD2 =
γc

h̄3

(
−σxPxP

2
y − σyPyP

2
x

)
+ h.c., (6)

which is cubic in components of the momentum operator. Here, h.c. denotes the Hermitian
conjugate [7].

2



Figure 2: g-factor vs quan-
tum dot radius for the po-
tentials with (a) α = β = 1
and (b) α = 1, β = 9. In
Fig(a), from bottom to top,
the curves represent E =
(0.1, 2, 5, 7, 10)× 105 V/cm.
In Fig(b), from top to bot-
tom, the curves represent
E = (0.1, 2, 5, 7, 10) × 105

V/cm. In both cases, We
choose B = 1 T.

The eigenvalue equation H |ψ>= ϵ|ψ>, with H given by Eqs. 1 through 6, was solved
numerically to obtain the lowest few eigenvalues and eigenstates versus the various parameters
of the system. These parameters include the magnetic field strength B, the electric field E,
and the strength of the quantum dot confinement potential as specified by the quantum dot

radius ℓo =
√

h̄
m⋆ω0

.

The electric field induced spin switching is quantified by defining an effective electron g
factor by,

ϵ =
1

2
gµBσzB, (7)

to describe the energy difference between the lowest energy up and down spin states. Thus,
we consider the lowest two states (including spin) ϵ2 and ϵ1 and calculate the effective g factor
as:

g =
ϵ2 − ϵ1
µBB

. (8)

3 Results and Discussions

The main observation is: the in-plane symmetry breaking in an anisotropic potential (i.e.
α ̸= β) gives rise to qualitatively different behavior for the tunability of the electron g-factor
with the application of electric and magnetic fields as compared to a symmetric potential
(i.e. α = β = 1).

In Fig.1, we illustrated isotropic and anisotropic effects in the quantum dot formed in the
plane of 2DEG. These figures were obtained by using α = β = 1 for the case of symmetric
quantum dots (Fig.1 (a)) and α = 1 and β = 9 for the case of asymmetric quantum dots

(Fig.1 (b)). Here, we consider ℓo =
√

h̄
mω0

= 30 nm and B = 1 T. The in-plane symmetry

breaking due to anisotropic gate potentials can be contrasted by comparing the wave function
of the electron in symmetric and asymmetric potentials in the plane of 2DEG.

Figure 2 illustrates the g-factor tunability vs the strength of the applied electric field and
confining potential (as parametrized by the quantum dot radius ℓo) for fixed magnetic field
(B = 1 T) for both symmetric quantum dots (α = β = 1 in Fig. 2(a)) and asymmetric
quantum dots (α = 1, β = 9 in Fig. 2(b)). We found that there is an abrupt change in the
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Figure 3: (a) g-factor vs electric fileds for quantum dots in the potential characterized by
α = 1, β = 1 (black), α = 1, β = 6.3 (red)α = 1, β = 9 (green). (b) g factor vs the degree
of anisotropy of the quantum dot confinement potential for various electric field strengths
E = (0.1, 2, 5, 7, 10)× 105 V/cm. In both cases, we choose B=1 T and ℓ0 = 30 nm.

g-value due to level crossings (two eigenstates have the same spin) at near 35 nm quantum
dot radius for the symmetric quantum dots. However, tunability of the g-factor or the
level crossings point in the energy spectrum extends to the larger quantum dot radius for
asymmetric quantum dots due to quenching in the orbital angular momentum. In Fig. 2(b),
we found the level crossings point at near 55 nm quantum dot radius. Also, at very large
anisotropic gate potentials (Fig. 2(b)), E-field tunability of the g-factor suppresses towards
bulk crystal of InAs quantum dots mainly due to the increase in the area of the quantum
dots.

In Fig.3, we compare the anisotropic effects in the variation of the g-factor with respect
to the gate controlled electric fields. In Fig.3(a), g-factor for symmetric quantum dots (α =
β = 1, black curve) increases with the increase in gate controlled electric fields. However,
anisotropic confining potential quenches the orbital angular momentum which reduces the
variation in the g-factor. This gives the suppression of the E-field tunability of the g-factor
towards bulk crystal. Rashba spin-orbit coupling is almost one order magnitude larger than
the Dresselhaus spin-orbit coupling in the range of E = 104 − 106 V/cm in InAs quantum
dots. It means, only Rashba spin-orbit coupling breaks the in-plane rotational symmetry in
InAs quantum dots. In Fig.3(b), we plotted g-factor vs ratio of β2/α2. Again, we found
that the quenching in the orbital angular momentum reduces the variation in the g-factor
in asymmetric InAs quantum dots. In this paper, we choose InAs quantum dots which has
quantitatively different behavior of the manipulation of the g-factor than GaAs quantum dots
(see Ref.(8)). Manipulation of the effective g-factor is −ve in InAs quantum dots whereas,
g-factor can be manipulated from −ve to +ve in GaAs quantum dots [7]. Usually, InAs
quantum dots is epitaxially grown on GaAs material and both material have the same sign
of bulk g-factor. It means, the penetration of the wavefunction from InAs dots to GaAs
material follows the same sign of the g-factor. However, GaAs quantum dots is epitaxially
grown on AlGaAs material which have different sign of bulk g-factor.
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4 Conclusions

We have carried out a numerical simulation study of gate induced tunability of the electron
g-factor in a prototype single electron spintronic device. We have considered symmetric and
asymmetric quadratic potentials in the plane of 2DEG and employed a numerical approach
based on the finite element method. We have shown that single electron spins in a quantum
dot can be manipulated by gate controlled electric fields.

The key result of this work is illustrated in Figs. 2 and 3: E-field and B-field tunability
is to cover the wide range of g-factor through strong Rashba spin-orbit coupling in InAs
quantum dots. In asymmetric quantum dots, we have shown that anisotropic gate potential
quenches the orbital angular momentum in the plane of 2DEG. This extends the tunability
of the electron g-factor to the larger quantum dot radius.
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