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1.  INTRODUCTION 
 

In work (Morse, 1980) Morse proposed a new 
adaptation scheme (high-order tuner) to solve a task 
of control of linear time-invariant plant with 
unknown parameters. In paper (Nikiforov, 1999) 
Nikiforov proposed a robustified variant of the high-
order tuner. In comparison with Morse’s tuner, the 
scheme by Nikiforov (Nikiforov, 1999) has an 
essentially simplified structure. This paper deals with 
the problem of designing an adaptive output-
feedback controller for unknown linear time-
invariant plants. The earliest decisions were based on 
the certainty-equivalence principle and augmented 
error concept (Monopoli, 1974). However, it was 
soon noticed that the proof of stability of equivalence 
schemes with adaptation laws, forced by an 
augmented error, is not trivial and can be 
accomplished after lengthy signal analysis (Morse, 
1980). Recently, such a class of adaptive controllers 
has been proposed in (Kristic, et al., 1994) with the 
use of nonlinear design tool: integrator backstepping. 
Now it is well known that these new controllers 
possess several useful properties which were 
unattainable for the traditional adaptive systems 
(Kristic, et al., 1995).  

 
An alternative approach to the design of adaptive 
controllers with unnormalized adaptation laws was 

proposed by Morse in (Morse, 1992) and introduced 
the notion of a “high-order tuner”. Robustified 
variant of the Morse’s high-order tuner was proposed 
by Nikiforov in (Fradkov, et al., 1999; Nikiforov, 
1999). The algorithm proposed in (Fradkov, et al. 
1999; Nikiforov, 1999) has essentially simplified 
structure and smaller dimension in comparison with 
Morse’s tuner. In comparison with approaches by 
Morse, algorithm by Nikiforov has smaller 
dimension: 
• algorithm Morse’s has dimension 2)12(2 −−ρn ; 
• algorithm Nikiforov’s has dimension 

4)1(2 −++ ρρn . 
This work represents the development of methods 

of adaptive (Morse, 1992) and robust control 
(Fradkov, et al., 1999; Nikiforov, 1999) in the tasks 
of adaptation single-input, single-output linear time-
invariant plants with unknown parameters. The 
algorithm proposed in this paper has essentially 
simplified structure and smaller dimension in 
comparison with Morse’s tuner (Morse, 1992) and 
scheme by Nikiforov (Nikiforov, 1999). 

 
 

2.  STATEMENT OF THE PROBLEM 
 

This article deals with the problem of adaptive 
control of linear time-invariant single-input, single-



output plants described by the following input-output 
relationship (Fradkov, et al., 1999; Nikiforov, 1999) 
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where )(tdd =  and )(tuu =  are the plant output and 
input, respectively; p  denotes the differential 
operator; k  is a high-frequency gain; 
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coprime polynomials with unknown coefficients; 
)(tww =  is the unknown smooth disturbance and 

∞<≤ 0)( wtw . 
 
The following standard assumptions (Monopoli, 
1974; Morse, 1992; Narendra, 1978; Nikiforov, 
1999) are made: 
 
(A1) polynomial )( pb  is Hurwitz; 
(A2) degrees n and m are known and 2>−= mnρ ; 
(A3) high-frequency gain 1=k . 
 
Let the desired behaviour of the closed-loop system 
be specified by the following reference model 
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where )(tdd rr =  is the reference output, )(trr =  is 
a piece-wise continuous bounded reference input 
(command signal), )( prα  is a monic Hurwitz 
polynomial of the order mn −=ρ , 0>rk . 
 
A tracking error is considered 
 

rddy −= . (3) 
 
Then the purpose of control is  
 

ε≤)(ty , (4) 
  
where ε  is a small positive number. 

 
 

3.  MODEL PARAMETERIZATION 
 

In order to design an appropriate control law, first it 
is necessary to derive a suitable error model. For any 
Hurwitz monic polynomial 
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of an order 1−n , the tracking error rddy −=  can 
be presented in the form 
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where dε  exponentially decays due to nonzero initial 

conditions, nR2∈θ  is a vector of unknown constant 
parameters and nR2∈ω  is a standard regressor 
vector (Fradkov, et al., 1999; Nikiforov, 1999), i.e. 
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Further a transfer function )( pW  with the relative 

degree 1−=∗ ρρ  is chosen such that  
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where 0α  is a strictly positive constant. Then the 
error model (6) can be rewritten as (Nikiforov, 1999) 
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or 
 

δϖα ++++−= wuyy Tθ0 , (10) 
 

where δαδδ 0+=  and )(tδ  exponentially decays 
due to nonzero initial conditions, the functions 

ω)p(W=ϖ , wpWw )(=  and a new variable u  is 
 

upWu )(= . (11) 
 
Consider the new function  
 

wT ++= δϖϕ θ , (12) 
 
then for the model (10) it is obtained 
 

uyy ++−= ϕα0 . (13) 
 
Thus equation (13) represents the model (6) as 
system of the first order. 

 
 

4. MAIN RESULT 
 

The variable u  is chosen such that 
 

u ϕ ′−= , (14) 
 
where ϕ′  is an estimate of the function ϕ . Then the 
control is 



ϕ ′−= −1)( pWu . (15) 
 
It is easy to see that for realization of control law (12) 
it is necessary to differentiate function ϕ′  (i.e. it is 
necessary to obtain 1−ρ derivation of ϕ′ ). Also it is 
clear that exact  enough estimation ϕ′  of the 
function ϕ  provides small error of )(ty . The last 
follows from equation (13). Let ϕ~ ϕϕ ′−=  than 
equation (13) takes the form 
 

ϕα ~
0 +−= yy . (16) 

 
From last equation it follows that the smaller is ϕ~  
the smaller is )(ty . So problems of the design 
algorithm (15) are the following:  

• operation of differentiation of the function 
ϕ′ ; 

• estimation of the function ϕ  with 
established precision.  

 
Step 1: 

Let the function ϕ  be measured, than let the 
following algorithm of estimation is selected 
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where constant 0>ϑ , the strictly positive function 

00 >≥ Cσ  is identical in growth rate with 2ϕ  (i.e. 

∞<≤≤ 1

2

0 C
σ
ϕ

, where 1C  is some positive 

constant), and 1−ρ  derivative of σ  is known or is 
measurable, coefficients ik  are such that the model 
(17) is asymptotically stable for the case 0=ϕ . 

 
Theorem 1. The algorithm (17), (18) under 

condition of magnification of parameter ϑ  ensures a 
diminution of the value ϕϕ ′− . 

 
Proof. The model (17), (18)  is considered in the 

form 
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Considering the error vector ξhη −= ϕ , it is 
obtained 
 

=+−−= )k)(( ϕϕσϑϕ 1qηhΓhη  
ϕσϑσϑϕ )k( ΓhqΓηh +−+= 1 . (21) 

 
As Γhq −=1k  (is checked up by substitution), than  
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where matrix Γ  is Hurwitz. 
The Lyapunov function is considered 
 

PηηTV = , (23) 
 

where matrix 0>= TPP  is such that 
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Differentiating (18), it is obtained 
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211 ϕσμσμ −−++ PηPhhη TT , (25) 
 
where the number μ  is such that 
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and constant 0>λ . 
In (25) an easily checked inequality was used  
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whence follows, that 
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where PhηTa =  and ϕ=b . 
As the function 00 >≥ Cσ  is such that 
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From the last inequality follows, that a vector of 
deviations ξhη −= ϕ  is bounded and all its 
variables can be converged to any small compact set, 
with the increase of parameter ϑ . 
By force of structure of the matrix h  it is obtained 
 

ϕϕϕ ′−=−= ξhηh TT  (30) 
 
and for some ϑ  (in general case ϑ  is large) 
convergence to any small compact set. 
 
Theorem 2. The signals )(tϕ  and 2C)t( +ϖ  (where 
number 02 >C ) are proportional. 

 
Proof. Consider the derivative of the function )(tϕ . 
From equation (9) it is obtained 
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As the function δ  decays exponentially, then signals 
)(tϕ  and )(tϖ  are proportional. 
 

Remark. It is possible to calculate the function 
ϖϖϖσ TCC +=+= 0

2
0 , such that the signals 

)(tϕ  and 2C)t( +ϖ  are proportional and in the 
control (15) only *ρ  measured derivatives )(tϖ  
will be used. 

 
Step 2:  

Now it will be constructed a realizable scheme of the 
algorithm of estimate (17) in the form 
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The system (32), (32) contains variables, which can 
be measured or calculated. 
 
Theorem 3. The algorithm of evaluation of the aspect 
(32), (33) is equivalent to algorithm (17). 

 

Proof. From the equation (10) it has been realized 
that 
 

uyy −+= 0αϕ . (34) 
 
Substituting the last equation into the system (17), it 
is obtained 
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Taking into account that 
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it is obtained 
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It is necessary to introduce a new variable 
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Then differentiating (38) for the system (37), it is 
obtained 
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So this algorithm has dimension 1)12( −+ ρn . 

 
 

5. EXAMPLE 
 

It is considered the following linear time-invariant 
single-input, single-output plant: 
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where 0a , 1a  and 0b  are unknown parameters and 
uncertain disturbance )(tw . 
 
Let the desired behaviour of the closed-loop system 
be specified by the following reference model 
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where )(tdd rr =  is the reference output, tr sin2=  
is a piece-wise continuous bounded reference signal. 

 
Choose Hurwitz monic polynomial 
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The tracking error rddy −=  can be presented in the 
form 
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where dε  exponentially decays due to nonzero initial 

conditions, 6R∈θ  is the vector of unknown constant 
parameters and 6R∈ω  is the regressor vector  
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Further a transfer function )( pW  with the relative 

degree 21=−=∗ ρρ  is chosen such that  
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where 10 =α .  
 
Choose the control according to equation (12) 
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where  
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It is necessary to choose the function σ  according to 
outcomes of the remark. The results of a computer 
simulation for variable )(ty  for the case 11 −=a , 

10 −=a , 10 =b , 10 =C , 1.0)( 0 =td  and 
disturbance ttw 5sin21)( +=  are presented in Fig. 1 
– 3. Presented control is seen to provide for the error 

)(ty  decrease under extension of parameter ϑ . 
 
 

6. CONCLUSION 
 

In this work the control schemes permitting to 
receive less complicated and bulky algorithms were 
offered. The structure of controller is nonlinear and 
contains a non-stationary filter (18), (40) and (41), 
parameters of which are selected from the 
requirements to the behaviour of an output plant 
variable. Thus the main contribution of the paper 
consists in design of an easy approach and reaching 
the simplified structure of the control law in 
comparison with Morse’s tuner and scheme by 
Nikiforov. In comparison with approaches by Morse 
and Nikiforov this algorithm has smaller dimension: 
• algorithm by Morse has dimension 

2)12(2 −−ρn ; 
• algorithm by Nikiforov has dimension 

4)1(2 −++ ρρn ; 
• this algorithm has dimension 1)12( −+ ρn . 
Regions of the parameters ρ  and n  are presented in 
Fig. 4 and 5. From Fig. 4 and 5 can see where the 
proposed controller is more simple than existing 
ones. 

 

 
 

Fig. 1 Transients in control system (41) – (50) for 
variable )(ty  (the case 5=ϑ ). 

 

 
 

Fig. 2. Transients in control system (41) – (50) for 
variable )(ty  (the case 10=ϑ ). 



 
 

Fig. 3. Transients in control system (41) – (50) for 
variable )(ty  (the case 20=ϑ ). 

 

 
 
Fig. 4. Comparison the new algorithm and Morse’s 

algorithm by dimension 
 

 
 

Fig. 5. Comparison the new algorithm and 
Nikiforov’s algorithm by dimension 
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