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Abstract 
Machine assembly with additional degrees of freedom 

is considered. The method of direct separation of 

motions was used for research. It was shown that the 

braking vibration moment occurring by the reason of 

resonance effects in the driven object can lead to 

excitation of rotor oscillations of the assembly with a 

frequency lower than the rotation frequency. Slow rotor 

oscillations represent a transient process to the stationary 

motion mode, which is established when an additional 

load torque occurs. Moreover, the maximum oscillation 

amplitudes will be relatively large. By the example of a 

vibration machine with an inertial drive, the occurrence 

of slow oscillations of the vibration exciter rotor is 

demonstrated. 
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1   Introduction 

 

Oscillation of machine assemblies drives is an important 

engineering problem. Oscillations of drives are 

investigated in many publications on machine 

assemblies. First of all, we note the article [Kolovskii, 

1985]. This paper investigates the dynamics of a 

machine assembly with an elastic transmission 

mechanism. It is shown by the method of a small 

parameter that when starting an assembly with a 

nonideal motor, a stationary mode of motion is possible, 

leading to the Sommerfeld effect. An expression is 

obtained for the additional average moment of resistance 

forces, driven to the motor rotor, caused by energy 

losses during oscillations. This moment is called 

vibrational in many works [Blekhman, 1971; Blekhman, 

2018; Kolovskii, 1985]. 

A rigorous analytical study of the resonant dynamics of 

oscillatory systems with limited excitation was first 

performed by Ilya Izrailevich Blekhman [Blekhman, 

1953]. Later, in his works devoted to this topic, a 

number of significant results were obtained, as well as 

new ideas for understanding the Sommerfeld effect were 

presented.  

In the book, which has already become a classic, 

"Vibration Mechanics" [Blekhman,  2000], it is shown 

that the regularities that occur during the manifestation 

of the Sommerfeld effect are quite simply explained 

from the standpoint of vibration mechanics. It should be 

noted that a significant contribution to the development 

of the theory of systems with limited excitation was 

made by works [Kononenko, 1969; Alifov and  Frolov, 

1990; Balthazar et al., 2003]. 

The book [Blekhman, 2000] indicates the expediency 

of using the concept and apparatus of vibration 

mechanics to solve problems of the dynamics of machine 

assemblies. In particular, it is shown that the dependence 

of the moment of the resistance forces and the driven 

moment of inertia of machine assembly on the rotor 

rotation angle, as well as the elasticity of links and 

nonideality of the motor, can lead to manifestation of the 

Sommerfeld effect.  

In the article [Blekhman and Kremer, 2017], the 

dynamics of a complex machine assembly with 

additional degrees of freedom is considered by the 

method of direct separation of motions. It is shown that 

these degrees of freedom modify the dynamics of the 

system with the basic degree of freedom; that when the 

frequency of the assembly rotor approaches one of the 

natural frequencies of the driven object, resonant braking 

of the rotor can take place; that the vibration moment 

arising from the resonance oscillations of the driven 

object can be significant. In addition, attention is drawn 

to the possibility of appearance in the systems under 

consideration, in addition to rapid oscillations of the 

rotor speed with the rotation frequency, also "semi-slow 

oscillations" (in some works called "slow oscillations") 
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with a much lower frequency. However, these 

oscillations are not considered in the article. 

The behavior of the so-called internal pendulum and its 

semi-slow motions is investigated using classical 

asymptotic methods of nonlinear mechanics in the works 

[Neishtadt, 1975; Pechenev, 1986; Fidlin, 2006]. Slow 

oscillations of inertial vibration exciters using the 

method of direct separation of motions are considered in 

the articles [Blekhman, 2008; Yaroshevich, 2020].  In 

article [Blekhman, 2008], for a system with inertial 

excitation of oscillations, the equation of motion of the 

internal pendulum ("equation of semi-slow oscillations") 

of an unbalanced rotor and an expression for the 

frequency of such oscillations were obtained, and a 

quantitative analysis of semi-slow oscillations was 

carried out. Consideration of the problem is also 

contained in works [Kremer, 2016; Yaroshevich, 2018; 

Filimonikhin, 2016; Yaroshevich, 2021].  

It seems important that in over-resonant vibration 

machines with an inertial drive, semi-slow oscillations 

are used to facilitate the passage of an unbalanced rotor 

to the natural frequency zone [Tomchin and Fradkov, 

2005; Tomchina and Gorlatov, 2021; Andrievskii, 

2001].  

This work is devoted to development of results of the 

article [Blekhman and Kremer, 2017].  

 

2   System diagram and equations of motion  

 

Let us consider a more general than in [Blekhman and 

Kremer, 2017)] dynamic model of a machine assembly, 

taking into account the elasticity of the most nonrigid 

links of a mechanical system (Fig. 1). The model 

consists of a rotary motor connected to a driven object 

(operating mechanism) by a transmission mechanism. 

The latter will be considered an elastic inertialess 

element; its stiffness and drag coefficients (viscous 

friction) are denoted by cc  and c  respectively. As 

generalized coordinates, we choose the angle of rotation 

of the motor rotor 1  and the angle of rotation of the 

input link of the driven object 2 , which is driven to the 

motor shaft; moreover, since the driven object has 

additional degrees of freedom, its position is determined 

by a k -dimensional vector U . Such a machine 

assembly is called in [Blekhman and Kremer, 2017] a 

complex real machine assembly. 

 

 
 

Figure 1. Machine assembly diagram 

 

The equations of motion of the described system can 

be represented in the form 

 1 1 12 12 1 ,c cI c L        

 2 2 12 12 2 2 2( , , , ),c cI c R M           U U       (1) 

                        2( , ) 0D  U ,                                    (2) 

 

where 1 2,I I – driven moments of inertia of the rotors of 

motor and driven object; 12 1 2    ;  1L   – motor 

torque;  2R   – moment of rotation resistance forces; 

M  – moment representing the load from the driven 

object. 

Let us assume that the given moments of inertia of 

rotors of the motor and the driven object are constant, 

since the variability of the moment of inertia does not 

have a significant effect on the studied dynamic 

processes, however, it significantly complicates the 

calculations. 

Note that the system of equations (1) is the equations 

of the rotational motion of rotors of the motor and the 

driven object, and the equation (2) is a conditional record 

of the equations of motion of the driven object. 

 

  3 The equation of dynamics of a machine assembly by         

     I.I. Blechman  

 

For research we will use the approach of vibrational 

mechanics and the method of direct separation of 

movements [Blekhman, 2000]. In accordance with the 

basic premise of the method, we assume that the 

considered motions can be represented in the form 

 

   ( ) , , ,i it t u u t       , 1, 2i         (3) 

 

where t – «slow», and t  «fast» time; ( )t – slow, 

i  and u  – fast time functions, besides the latter are 

2  - periodic in t  and zero mean for the period. 

Then, for coordinates i , taking into account (3), we 

can take:    ,i i it t       , where ( )i t  – is a 

some function t , which we will consider slow. 

Applying the method used, we obtain the following 

system of equations for slow and fast motions 

 

 1 12 ,cI с L     

               
 2 12

2 2 2( , ( ) , , ) ,

cI с R

M t

  

    

   

    U U
          (4) 

 

1 1 12 12 1 1 0,c cI с k          

2 2 12 12 2 2 2 2( , , , ),c cI с k               

2 2( ( ) , )) 0D t    U ,          (5) 

 

where 12 1 2    ; 12 1 2    ; 

2 2 2 2 2

2 2 2

( , , , ) ( , ( ) , , ))

( , ( ) , , )) .

M t

M t

        

    

     

   

U U

U U
 



In the equations of systems (4),  (5) and below, the 

angle brackets  indicate the averaging of the 

expressions they contain over a period 
2 


 in fast 

time ; expressions for the moments  1L   and  2R   

are linearized, as in [Blekhman, 2008], near the 

stationary values i   according to the formulas 

   1 1 1L L k    ,    2 2 2R R k    ; 1 2,k k  – 

electrical and mechanical damping coefficients. 

Following the method used, we will find approximate 

solutions of the equations of fast motions (5), with 

“frozen” slow variables t , ( )t , ( )i t . 

At first, considering rotation of the rotors, which 

occurs with an angular velocity close to equable motion 

( )i t  , we assume 2 2( , , , )      

2 2 2( , , , )      , where   – is a small parameter. 

Then, in the initial approximation ( 0, 0i   ), the 

first two and the last equations of system (4), (5) can be 

represented in the form obtained in [Blekhman, 2000] 

 

     I L R V      ,    

                       2 0( ( ), ) 0D t  U                     (6) 

 

where 1 2I I I  ; 0U  – 2  periodic solution of the 

last equation of the system (6); 

2 2 0 0( ) ( , ( ) , , )V M t       U U  –  vibration 

moment. 

Note that the last equation of system (5) is actually the 

equations of forced (parametric) oscillations of the 

driven object; in the case of nonlinearity of system (5), 

there can be several solutions to this equation, and each 

solution will have its own expression for ( )V  . Note 

that work [Blekhman and Kremer, 2017] provides a 

procedure for obtaining an expression for the vibration 

moment ( )V  .  

As you can see the first equation (6) exactly coincides 

with the one obtained by I.I. Blekhman in [Blekhman, 

2000; Blekhman and Kremer, 2017], which shows the 

universality of the equation proposed by him for a 

complex real machine assembly.   

Consequently: the results given in the article 

[Blekhman and Kremer, 2017] concerning stationary 

modes of motion 0 const    and their stability are 

also valid for the considered dynamic model of the 

machine assembly; the availability of an elastic-damping 

transmission mechanism in the drive of the assembly 

does not affect the slow motions of the rotors.   

Thus, the resonance oscillations occurring in the driven 

object lead to the appearance of an additional moment of 

resistance forces ( )V   loading the motor. In [Blekhman 

and Kremer, 2017] it is emphasized that the value of the 

vibration moment can be significant in comparison with 

the traditionally taken into account the moment of 

resistance forces  2R  . It is important that in this case, 

the vibration moment can have a significant effect on the 

mode of motion of machine assembly; moreover, it also 

can change its operating mode. So, when starting, the 

motor may not reach the specified rotation mode, and in 

the operating mode, a significant decrease in its average 

angular velocity is possible. In addition, as will be 

shown below, important effects are found out at the level 

of rapid movements. 

According to (4), in case of resonance oscillations in 

the driven object, the static deformation of the drive 

(average deformation) can significantly exceed the 

common static deformation.  

 

4 The equation of fast motions of machine assembly 

 

Having regard to the dynamic nature of vibration 

moment, it can be expected to have a noticeable effect 

on the fast motions of the rotors. 

Let us consider the corresponding equations taking into 

account the following approximation ( 0  , 

i i    ). In this case, at first, we restrict ourselves, 

as in article [Blekhman and Kremer, 2017], to the case of 

a dynamic model of a rigid machine assembly. 

Then the equations of fast motions of rotor of the 

assembly can be represented in the form  

 

 0 0, , ,I k M         U U ,   (7) 

 

where 1 2k k k  ;  0 0, , ,M      U U  

   0 0 0 0, , , , , ,M M            U U U U

. 

Note that, in (7), the “frozen” angle  , which is 

insignificant for the equations of fast motions, was 

omitted. Assuming that the angle   is small, we expand 

the function  0 0, , ,M U U       in a Taylor series. 

As a result, we obtain 

   0 0 0 0, , , , , ,M M           U U U U  

 /

0 0, , ,M     U U   where the prime denotes the 

derivative with respect to  . Then equation (7) can be 

written in the form 

 

    0 0, , ,vI k c M         U U ,         (8) 

 

where   /

0 0, , ,vc M      U U  - “dynamic” 

stiffness coefficient. 

Further decomposing the periodic function of time 

 0 0, , ,M    U U  in a Fourier series per the 

argument  , we obtain 

     0 0

1

, , , sinn n

n

M t A n n t      




  U U . 



Note that when determining the Fourier coefficients in 

the expression for the moment  0 0, , ,M    U U  we 

substitute the value of the vector 0U , found for the 

steady oscillations of the driven object under the 

influence of the impact forces, that occur when the rotor 

rotates with an angular velocity i  .  

In the case of resonant effects in the driven object, the 

influence of all harmonics except for one - the resonant 

one, can be neglected. Then, in the considered 

approximation, we come to the equation of fast motions 

of the rotor of the machine assembly in the form 

 

     
22 cosb p Q n t       ,        (9) 

 

where 
2

k
b

I
  ; vc

p
I

  ; 
( )nA n

Q
I


 . 

Thus, when a stationary mode occurs, which is a 

consequence of  resonance oscillations in the driven 

object, the equation of fast motions of the machine 

assembly rotor takes form of an oscillatory-type 

equation. On the right side of (8), the value of 

“dynamic” stiffness coefficient c , representing the rate 

of change of the function  0 0, , ,M    U U , in the 

case of resonance effects in the driven object will be 

significant. 

The variable p  is the frequency of small free 

oscillations of the assembly rotor or, according to 

[Blekhman, 2008; Blekhman 2018], the frequency of 

small free oscillations of the internal pendulum. In 

article [Tomchina and Gorlatov, 2021] this frequency is 

called the Blekhman frequency. Note that in the case 

under consideration, the Blekhman frequency can also 

be considered the critical frequency of the machine 

assembly rotor.  

When resonance oscillations occur in the driven object, 

the amplitude of the driving force in the right side of (9) 

will be relatively large. Accordingly, in the considered 

mode of motion, the amplitudes of forced oscillations of 

the rotor speed of machine assembly will be increased. 

Moreover, in the case of fulfilling the condition 

n p   (which is considered to be rather mild) when 

the stationary regime is established, there will have place 

a pronounced transient process with the main slow 

oscillation frequency p  and relatively large initial 

amplitudes.  

The basis for this conclusion is also the fact that the 

considered stationary modes occur when there is an 

abrupt increase in the vibration moment, the effect of 

which for a low-frequency oscillatory system can be 

considered shock.  

Next, we will again give a consideration to the 

dynamic model of an elastic machine assembly (Fig. 1). 

Taking into account that driven moment of inertia of 

rotor of the driven object is much more than the moment 

of inertia of the motor 2 1I I , we come (as in 

[Blekhman, 2017) to the equation of fast motions of 

driven object’s rotor in the form (9). 

Consequently, the conclusions made above when 

analyzing Eq. (9) are also valid in the case under 

consideration. 

 

5 Example. Vibration machine with inertial drive 

 

The design model consists (Fig. 2) of a rigid platform 

with an unbalanced vibration exciter attached to it; at the 

same time, in contrast to [Blekhman, 2008], its rotor is 

connected to the rotor of the electric motor (for 

definiteness - of the asynchronous type) by an elastic-

damping element (transmission). Note that the elastic-

damping connection is considered to be inertialess; let it 

be an elastic coupling for brevity. 

 

 
Figure 2. Dynamic model of vibration machine 

 
The equations of motion of the system can be 

represented in the form of equations (1) and the equation 

of platform oscillations 

                                                           

 2

2 2 2 2sin cosx xMx x c x m         ,           (10) 

 

where M  – platform weight; x - horizontal 

displacement of the platform; x , xc  – coefficients of 

viscous friction and stiffness of platform fasteners; ,m   

– vibration exciter mass and eccentricity; 1 , 2  –  

angles of rotation of the motor and exciter rotors; the 

function 2 2( , , , )M   U U  has the form 

2 2 2( , , , ) sinM m x   U U . 

We are looking for solutions of the equations of motion 

in the form (3). Following the method used, we obtain 

the equations of slow and fast motions of the motor and 

exciter rotors in the form (4), (5), where 

2 2 2 2( , , , ) sin( )m x t           

2 2sin( )x t     . 

Summing up the equations of slow motions, we arrive 

at the equation of dynamics of machine assembly (6); 

where   2 21

2
st x x dV A p k   , x

x

c
p

M
 ; where stA – 

amplitude of the platform over-resonance oscillations; 

dk – dynamic coefficient. 

Thus, the resonance oscillations of vibration machine 

lead to the occurrence of a braking vibration moment. It 

seems important that the value of this moment is 

proportional to the square of the dynamic coefficient. 



Considering the “peak” type of the vibration moment 

change, we can assume that it has a noticeable effect on 

fast motions. 

We represent the equations of fast motions (7) in the 

form [Blekhman, 2008]: 

       

 2 2 2 2 2sin cos sinI k m x t x t x t          .             

(11) 

Taking into account the solution of equation (10), 

corresponding to the steady-state forced oscillations of 

the bearing body when the vibration exciter rotates with 

a constant angular velocity  , it is easy to represent 

equations (11) in the form (8), or (9), where 

max cosv xc V  ;  0 0 max, , , sin 2M U U V t       ; 

2

vc
p

I
   . 

It was shown in [Blekhman, 2008] that for the 

equations of fast motions to be valid, the frequency p  

must be significantly lower than  ; usually enough 

3p  . In this case, when a stationary mode is 

established, an intense transient process will take place, 

which is damped biharmonic oscillations of the rotor 

with a slow (fundamental) frequency p . 

Rotor oscillations are best judged by rotor speed 

oscillations. Taking into account the shock application of 

the vibration moment ( 20 0  , 20 max 2V I  ), from 

equation (9) we obtain (without taking into account the 

resistance forces): 2 3 cos cos 2A p t A t     , where 

max

22

V
A

I



 . Consequently, during this period of motion, 

both the initial and steady-state oscillation amplitudes of 

the rotor speed will be relatively large, since they 

contain the resonant value of the vibration moment, 

maxV . 

The obtained results are confirmed by the results of 

computer simulation (Fig. 3). 

 

 
 

   Figure  3.   Changing of the vibration exciter speed in case 

of: 1 - «stucking» of the speed ( 1,2m kg m  ); 2 - passage 

of vibration exciter through the resonance zone 

( 1,197m kg m  ) 

 Numerical integration of the system of equations (1), 

(2) and equations of the dynamic model of an 

asynchronous electric motor [Yaroshevich, 2020] was 

carried out with the following parameters: 300M kg ; 

2

1 0,0068I kg m  ; 2

2 0,068I kg m  ; 1500 /x kg s  ; 

56,9 10 /хс N m  ; 20,162 /c kg m s   ; 48cс N m  ; 

electric motor 4A serie with power 2,2motP kW  and 

synchronous frequency 1500sn rtm . Fig. 3 

demonstrates the occurrence of slow oscillations of the 

vibration exciter rotor speed in the resonance zone of the 

vibration machine (
118p s

 , 147 s  ). 

Note also that the presented results show good 

agreement with the results obtained in [Blekhman, 

2008]. 

 

6 Conclusion 
 

Using the method of direct separation of motions, drive 

dynamics of the machine assembly with additional 

degrees of freedom is considered; in addition, the 

elasticity of drive is taken into account. 

It is shown that the equation of vibration mechanics of 

a complex real machine assembly proposed by I.I. 

Blekhman, retains its form in the case of an assembly 

with an elastic transmission mechanism, thereby 

indicating the generality of the results obtained by him.  

The efficiency of using the approach of vibration 

mechanics and the method of direct separation of 

motions for solving applied problems of the dynamics of 

machine assemblies is demonstrated. 

It is shown that along with the basic equation of 

vibration mechanics (the equation of slow motions), the 

equations of fast motions also allow one to obtain 

important practical results.  

It has been found out that the occurrence of resonance 

oscillations in the driven object of the assembly can lead 

to the excitation of slow oscillations of the rotor; the 

initial amplitudes of such oscillations will be large; in 

addition, during this period of motion, there will 

encounter increased deformation of the drive and 

increased oscillations in the rotor speed. 

The obtained results can be useful in the development 

of control algorithms for the passage of the resonance 

zone by an unbalanced rotor. 

 

Acknowledgements 

 

The authors are grateful to Professor [Ilya Izrailevich 

Blekhman] for useful comments and critical remarks to 

the study. 

 

References 
 

Alifov, A.A., Frolov, K.V. (1990). Interaction of 

Nonlinear Oscillatory Systems with Energy Sources. 

Taylor & Francis Inc., London 

Andrievskii, B.R., Blekhman, I.I., Bortsov, Yu.A., 



Gavrilov, S.V., Konoplev, V.A., Lavrov, B.P., 

Polyakhov, N.D., Tomchina, O.P., Fradkov, A.L., et 

al., (2001). Upravlenie Mekhatronnymi Vibratsion-

nymi Ustanovkami (Control of Mechatronic Vibra-

tional Units), Blekhman, I.I. and Fradkov, A.L., Eds. 

Balthazar, J.M., Mook, D.T., Weber, H.I. et al 

(2003). An overview on non-ideal vibrations. 

Meccanica, 38(6), рр. 613–621. 

Blekhman I.I. (1953). Self-synchronization of vibrators 

of some vibrating machines.  Inzhenerny Sbornik, vol. 

16, рр. 49 -72.  

Blekhman I.I. (1971). Synchronization of Dynamic 

Systems. Nauka. Moscow  (in Russian) 

Blekhman I.I. (2000).Vibrational mechanics – Nonlinear 

dynamic effects, General approach, Applications. 

Singapore at al.: World Scientific.  

Blekhman I.I. (2018). Vibrational mechanics and 

vibrational rheology (theory and applications).  

Blekhman I.I., Blekhman L.I., Yaroshevich, N.P. (2017). 

Upon drive dynamics of vibratory machines with 

inertia excitation. Obogashchenie Rud,  4, рр. 49–52.   

Blekhman I.I., Indeitsev D.A., Fradkov A.L. (2008). 

Slow motions in systems with inertial excitation of 

vibrations. Journal of Machinery Manufacture  and   

Reliability, vol. 37, Issue 1, рp. 21–27.  

Blekhman, I.,  E. Kremer (2017). The dynamics of a 

complex machine assembly: Vibration-induced drag on 

the rotation. Journal of Machinery Manufacture and 

Reliability, 46 (4), рр. 330-335. 

Fidlin A. (2006). Nonlinear Oscillations in Mechanical 

Engineering, Berlin: Springer-Verlag.  

Filimonikhin G.B., Yatsun V.V. (2016). Investigation of 

the process of excitation of dual-frequency vibrations 

by ball auto-balancer of Gil 42 screen. Eastern-

European Journal of Enterprise Technologies, vol. 1,  

Issue 7 (79), рр. 17–23.  

Kolovskii, М.Z. (1985). Study of the dynamics of steady 

motion of the machine unit with an elastic transmission 

mechanism. AS USSR, Engineering science, 2, рр.  40–

47. 

Kononenko, V.O. (1969). Vibrating Systems with 

Limited Power Supply. London. 

Kremer E.B. (2016). Slow Motion in Systems with 

Modulated Excitation. Journal of Sound and Vibration, 

vol. 383, pp. 295-308. 

Neishtadt A.I.  (1975). Passage through a Resonance in 

a Two-Frequency Problem.  Dokl. Akad. Nauk SSSR, 

vol. 221, рp. 301–304. 

Pechenev, A.V. (1986). On the Motion of a Vibrational 

System with Limited Excitation near a Resonance.  Dokl. 

Akad. Nauk SSSR,  vol. 290, рp. 12–15. 

Tomchin D.A., Fradkov A.I. (2005). Control of rotor 

passing through the resonance zone on the basis of the 

method of velocity gradient. Problems of machine 

building and reliability of machines, 5, рр. 66–71.  

Tomchina O.P., Gorlatov D.V., Tomchin D.A., 

Epishkin A.E. (2021). Control of passage through 

resonance zone for 1-rotor vibration unit with time-

varying load. Cybernetics and physics, vol.10, no.2, pp     

Yaroshevich, N.,  Zabrodets, I., Shymchuk, S., 

Yaroshevich, T. (2018). Influence of elasticity of 

unbalance drive in vibration machines on its oscillations. 

Eastern-European Journal of Enterprise Technologies, 

vol. 5, Issue 7 (95), рр. 62–69. 

Yaroshevich, N., Yaroshevych, O., Lyshuk, V. (2021). 

Drive Dynamics of Vibratory Machines with Inertia 

Excitation. Mechanisms and Machine Sciencethis link is 

disabled,  95, рр. 37–47.  

Yaroshevich, N., Puts, V., Yaroshevich, 

T., Herasymchuk, O. (2020). Slow oscillations in 

systems with inertial vibration exciters. 

Vibroengineering Procedia, 32, рр. 20–25. 

 

https://link.springer.com/search?facet-creator=%22I.+I.+Blekhman%22
https://link.springer.com/search?facet-creator=%22E.+B.+Kremer%22
https://link.springer.com/article/10.3103/S1052618817030037
https://link.springer.com/article/10.3103/S1052618817030037
https://link.springer.com/article/10.3103/S1052618817030037
https://link.springer.com/journal/12001
https://link.springer.com/journal/12001
https://www.scopus.com/authid/detail.uri?authorId=55302518900
https://www.scopus.com/authid/detail.uri?authorId=57222297939
https://www.scopus.com/authid/detail.uri?authorId=57211990183
https://www.scopus.com/authid/detail.uri?authorId=55302518900#disabled
https://www.scopus.com/authid/detail.uri?authorId=55302518900#disabled
https://www.scopus.com/authid/detail.uri?authorId=55302518900
https://www.scopus.com/authid/detail.uri?authorId=57200078621
https://www.scopus.com/authid/detail.uri?authorId=56996142100
https://www.scopus.com/authid/detail.uri?authorId=56996142100
https://www.scopus.com/authid/detail.uri?authorId=57203904682

