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Autonomous nonlinear systems commonly exhibit simultaneous coexistence, in the phase space,

of chaos and stable steady states, created by subcritical Hopf bifurcation. We show that such chaotic

instability can be destroyed by small-amplitude modulation of any system parameters. The chaotic

attractor undergoes boundary crisis due to modulation-induced collision with an unstable periodic

orbit (UPO). Such boundray crisis exhibits a new resonance that we refer to as ’crisis resonance’

in the control parameter space. Crisis resonance implies that crisis occurs at minimal modulation

depth due to maximal evolutions of the UPOs and the chaotic attractor. Crisis resonance occurs

close to some critical frequency (we refer to as ‘crisis resonance frequency’) or its multiples. The

UPO frequency is a good estimate of the crisis resonance frequency. The small-amplitude parameter

modulation destroyes chaos in the presence of noise as well. These features are observed theoreti-

cally with the paradigm of autonomous systems, namely Lorenz equations of thermal hydraulics and

are in excellent agreement with the experimental results, obtained with an analog circuit of Lorenz

equations.

PACS number(s): 05.45.-a,42.65.Pc, 42.65.Sf, 44.25.+f,47.52.+j

In recent past, controls in the form of small perturbations have been shown to create fascinating effects in the dynam-

ics of nonlinear systems; to mention in particular, novel techniques like (i)controlling chaos (using OGY concepts1 or

proportional feedback method2) and (ii)tracking the unstable steady states3. These techniques are model-independent

and have found wide applicability in varied branches of science including human heart or brain related nonlinear sci-

ences, fluid dynamics, electronics, chemical reactions, lasers etc. When a system is chaotic and there is no coexisting

stable steady (or periodic) attractor, one of the major objectives of control of chaos is to get rid of chaotic irregularity

by stablizing the dynamics at an unstable stationary (periodic) state (embedded inside the chaotic orbit) with the

help of such small control perturbations. A detailed review in this direction and a comprehensive list of references may

be seen in Boccaletti et. al., 20004. Unless the system parameter values are grossly shifted out of the chaotic regime,

one hurdle still remains in such occasions: The system goes back to the chaotic state as soon as the control is switched

off. However, the scenario could be grossly different when the chaotic attractor coexists in the phase space with some

stable steady states (or periodic) states (multistability) and the major objective is to move the system out of chaotic

state and bring in any of those stable steady (periodic) states. Under such circumstances, it would be preferable to

device a deterministic control mechanism to destroy the chaotic state. So that, the system, as a consequence, settles to

a neighboring stable state and remains there even if the control is switched off. In this paper, we will demonstrate such

a control mechanism for autonomous nonlinear systems that commonly exhibit multistability in the form of simulta-

neous coexistence in the phase space of chaotic instability and steady states, created by subcritical Hopf bifurcation.

To name a few of such systems, (i)optically injected NMR5, CO2
6,7 and semiconductor lasers,8,9 (ii)Far-Infra Red

(FIR) lasers,10,11 (iv)thermal hydraulics in two-phase natural circulation fluid dynamics,12–14 (v)nonlinear electronic

circuits,15,16 and (vi)plasma.17

The objective of this paper is to explore the effect of small-amplitude periodic modulation of system parameters

on such chaotic instability. These investigations are motivated not only from the viewpoint of basic research but

keeping in mind its wide applicability. In particular, we would be interested to know whether such modulation may

lead to the destruction of chaotic instability so that the system could regularly remain at steady states even in the

multistable operating regime. We believe such a concept may then be useful to many autonomous systems (applica-

tions) that are designed to remain at steady states and extension of the operating regimes in the multistable regions

are beneficial. We consider the paradigm of autonomous nonlinear systems, namely Lorenz equations of thermal
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hydraulics18 and demonstrate theoretically the modulation-induced boundary crisis of Lorenz chaotic attractor, and

validate experimentally with its analog circuit. Lorenz equations are described by:

Ẋ = −σ (X − Y ) ;

Ẏ = rX − Y − XZ; (1)

Ż = XY − bZ.

Figs. 1 and 2 show some of our numerical results of Eqs. 1. In plot(a) of Fig. 1 we show the bifurcation diagram

with r as the control parameter (σ = 10, b = 1.2). The trivial steady state (X=Y=Z=0), denoted by ‘O’ (the light

blue horizontal solid line), undergoes pitchfork bifurcation at the point ‘P’ and two stable nontrivial steady states,

denoted by S+ (green curve), and S
−

(violet curve) are created. Each nontrivial steady state undergoes subcritical

Hopf bifurcation (loss of stability due to collision with a coexisting unstable periodic orbit ‘UPO’) at r = rH (at the

points ‘H’). The red curve above the light blue line represents the minimum-X points of U+ UPOs (around S+) at

various values of r. The red curve below the light blue line denotes the maximum-X points of ‘U
−

’ UPOs (around S
−

)

respectively. As one reduces r from rH , these unstable periodic orbits (‘UPO’) grows bigger in size in the phase space.

At r = rG
∼= 9.0 (denoted by ‘G’), the UPOs become bi-asymptotic to the trivial saddle (‘O’), creating homoclinic

orbit (gluing bifurcation).19–22 Plot(b) shows the homoclinic orbit (red coloured) around the trivial saddle (‘O’),

created by the composure of U+, U
−

and the saddle ‘O’. The stable nontrivial steady state S+ (green plus symbol)

lies inside U+ and S
−

(violet plus symbol) within U
−

. Plot(c) shows the overall bifurcation diagram with r as the

control parameter; σ = 10, b = 1.2. In the case of forward sweep (increasing r), the steady states S+ (green solid lines)

and S
−

(violet solid line) undergo subcritical Hopf bifurcations at rH
∼= 18.25 (denoted by ‘A’). Lorenz chaos (the

superposition of green and blue shaded region) is observed for r > rH . On the contrary, when r is reduced from such

a high value, the chaotic attractor (blue shaded region) coexists in the phase space with the steady states till there

is another jump back to any of these steady states at r = rc
∼= 16.25 (denoted by ‘B’). Thus the multistable interval

(denoted by BA) is between 16.25 ≤ r ≤ 18.25. The jump at r = rc occurs because the chaotic attractor collides

with any UPOs leading to boundary crisis. Plot(d) shows such crisis due to the collision with the U+ UPO at r ∼= rc

and subsequent transition to the steady state S+ . The boundary crisis is illustrated more through phase portraits of

Lorenz chaos (green) and the UPOs (red) in plot(e). U+ and U
−

lie in the closure of the chaotic attractor. This leads

to the crisis and after chaotic transients, the iterations converge to either of the steady states S+ (the green circular

symbol) or S
−

(violet circular symbols).

We demonstrate now the controlled destruction of Lorenz chaos within the multistable region rc < r < rH by

a small-amplitude sinusoidal modulation over any system parameters. As a typical example, first we consider the

modulation over r in the form of r(1+δcos(2πνt)). By ‘small’ amplitude (say δr), we imply that no qualitative change

would occur in the dynamics if r is changed by δr without any modulation. In other words, if the unmodulated system

is originally chaotic, it will remain chaotic even if r is changed by δr. We first fix the operating value of r = 17.0 as an

example, and show the phase portraits of the chaotic attractor, UPOs and the stable steady states in plot(f). Next

we introduce the modulation over r with frequency ν = 0.8. As the modulation depth δ is increased beyond 0.006,

the chaotic attractor undergoes boundary crisis. Plot(g) illustrates the temporal destruction of the chaotic attractor

due to collision with the U+ UPO and subsequent transition to the controlled steady state S+. The system remains

at the same steady state even when the control is switched off. The threshold (minimum) modulation amplitude (δr)

to create such crisis depends on the remaining system parameters. For instance, in plot(g) we show the dependence of

the threshold amplitude δr versus r at the same frequency. One may notice that the threshold amplitude is relatively

large near the Hopf bifurcation region (r ∼= rH). This is expected because the phase-space separation between the

chaotic attractor and the UPOs is the largest near r = rH . Therefore, to induce crisis, the required modulation

amplitude could be relatively large. By a similar argument one can explain the smallest threshold amplitude near the

crisis point (r = rc) where the UPOs are in the close proximity of the chaotic attractor. Overall, we may also notice

that the parameter modulation technique is very effective to create the boundary crisis even at small modulation

amplitude. For instance, consider the operating point at r = 17.5. Plot(c) suggests that r should be decreased by

r − rc = 1.25 to create the crisis without modulation. However, if we introduce the parameter modulation, the same
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may be performed by modulation amplitude δr ∼= 0.2 [see plot (h)]. In fact, along a broad range of the multistable

region, chaos can be destroyed in a similar manner where the threshold modulation amplitude would be much smaller

than the gross change of r, required for destruction of unmodulated Lorenz chaos. Moreover, in the case of parameter

modulation, the time required to destroy the transient chaos could be shortened by operating at a little higher than

the threshold modulation depth. This is because, the transient chaos decays very fast if δ is increased even slightly

beyond its threshold.

Plot(a) in Fig. 2 shows two threshold destruction boundaries [(i)and (ii)] in (δ−ν) space for r = 17, b = 1.2, σ = 10.

The chaotic attractor is destroyed if the modulation parameters lie within any of these boundaries. Significantly, the

plot also shows that the threshold amplitude is minimal when the modulation frequency is equal to some critical

frequency (we denote by νc = 0.825) or its double (2νc). This is a typical feature of some new resonance phenomenon

that we refer to as ‘crisis resonance’. By ‘crisis resonance’ we imply that crisis occurs at minimal modulation amplitude

due to maximal evolutions of the UPOs and the chaotic attractor. Our analyses suggest that the first crisis resonance

occurs around νc = 0.825 and the second resonance around 2νc. To explore more about the crisis resonance, we analyze

few more characteristic frequencies of Lorenz model, namely UPO frequency (νu), ‘steady-state eigenfrequency (νe)’,

and ‘steady-state resonance frequency (νs)’. The steady-state eigenfrequency νe is defined as the imaginary part of

the complex pair of eigenvalues, divided by 2π, of the Jacobian one obtains after linear stability analyses around the

steady states. For fixed σ = 10 and b = 1.2 values, we compute νe for various values of r [shown by the orange curve].

The UPO frequency (νu) is shown by the violet curve. Steady-state resonance frequency, for given values of σ, b and

r, is defined as the modulation frequency at which the linear dynamical response to the periodic parameter modulation

exhibits a maximal behavior. To compute (νs), we fix σ = 10, b = 1.2, r = 16.5 and monitor the dynamical response

of the Lorenz equations by modulating r with ν = 0.8 and very small modulation depth (δ = 0.0002). The initial

conditions are selected from the basins of steady states. Lorenz model dynamics follows the modulating signal. We

sweep the modulation frequency and indeed notice the maximal behavior of the frequency response at ν = νs. We

compute νs over a broad range of r and show by the green curve in plot(b). One notices that νs matches closely with

the eigenfrquency νe in the r < rG range. This is because there are only two stable steady states and no UPOs, nor any

stable chaotic attractor in this parameter regime. Therefore, the resonance is purely determined by the steady states.

As r is increased beyond rG, the deviation between νs and νe marginally increases. In this region, the resonance is

influenced by the presence of UPOs in addition to the steady states. As we approach the Hopf bifurcation region, the

UPO size becomes smaller and its effect on the small-signal resonance becomes more prominant. This may be noted

by the fact that νs converges to νu in the Hopf bifurcation limit.1 We concentrate now in the multistable region. All

the characteristic frequency curves in plot(b) have been shown with better resolution in plot(c). We also show here

the crisis resonance frequency νc curve. One would notice that νu lies close to νc while νs is larger and νe differs most.

In other words, the crisis resonance occurs when the modulation frequency is close to the UPO frequency.

So far we demonstrated the effect of periodic modulation over r in destroying the chaotic attractor. The same feature

is observed by modulating other parameters as well, namely σ and b. For instance, plot(d) shows the multistable

regime with σ as the control parameter without modulation; r = 17 and b = 1.2. The steady state S+ undergoes

subcritical Hopf bifurcation at σ ≡ σH = 7.0 (the point ‘A’) and Lorenz chaos is observed for σ < σH . If we keep

increasing σ hereon, we observe chaotic attractor coexists with the steady states for a large range of σ till boundary

crisis occurs at σ ≡ σc
∼= 11.5 (at the point ‘B’). Thus the multistable interval in σ axis is denoted by AB. In

this multistable regime, we have observed controlled death of Lorenz chaos by small-amplitude periodic modulation

over σ. For instance, plot(e) shows the temporal destruction of Lorenz chaos in the second crisis resonance region

(σ = 10, ν = 1.7, δ = 0.1) due to the collision with the U
−

UPO. Similar controlled crises have also been observed with

b modulation. Plot(f) shows the bifurcation diagram with b as the control parameter for the unmodulated Lorenz

model (σ = 10, r = 17). The steady state S
−

undergoes subcritical Hopf bifurcation at b ≡ bH
∼= 0.85 (denoted by the

1For r << rH , νu grossly differs from νs and νE . the UPO frequency sharply decreases as we decrease r. At the gluing

bifurcation limit (r = rG) the frequency approaches zero.
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point ‘A’). For b < bH Lorenz chaos is observed. As b is increased from bH , Lorenz chaos coexists with the steady state

S
−

untill the boundary crisis occurs at b ≡ bc
∼= 1.35 and the simulations settle down to S

−
steady state for b > bc. Plot

(g) shows a typical example of controlled destruction of chaos by b modulation (b = 1.2, δ = 0.02, ν = 0.82). In each of

the three types of parameter modulations, the crisis resonance occurs when the modulation frequency is close to the

UPO frequency. Also, crisis threshold curves exist around such crisis resonance frequency or its multiples. Therefore,

it is apparent that a small-amplitude modulation over any parameter is effective in creating global changes (like death

of the chaotic attractor) if the modulation frequency is chosen within the resonance regions. Also such crisis occurs

due to UPO-induced resonance. Finally in plot(h), we demonstrate the applicability of this method in the presence of

noise. We introduce to each equation in Eqs. 1 an additive white Gaussian noise of standard deviation ρ and average

value zero. The maroon time series shows a typical example of noisy Lorenz chaos for σ = 10, r = 17, b = 1.2, ρ = 1.0.

Next we apply control modulation over r (ν = 0.8, δ = 0.01 to notice the destruction of chaos and the system goes

to a noisy steady state, driven by periodic modulation. All these features indicate the versatility of the parameter

modulation approach.

These theoretical results are in good agreement with our experimental observations23 with an analog circuit of

Lorenz equations (Fig. 3). The circuit equations are as follows:

Ẋ = −
1

R1C
(X − Y ) ;

Ẏ = −
1

R3C
XZ +

1

R4C
X −

1

R5C
Y +

Vd

R8C
X ; (2)

Ż = −
1

R6C
XY −

1

R7C
Z.

The circuit components are as follows: R1 = R2 = 50kΩ, R3 = R6 = 5kΩ, R4 = 25kΩ, R5 = 100kΩ, R7 =

333kΩ, R8 = 100kΩ, C = 1 nF. In the schematic diagram of the analog circuit, conventional symbols are used to

describe the operational amplifiers, analog multipliers and inverters. For a generalized experimental setup of Lorenz

circuit we have the provision of two voltage sources, represented by Vdc and Vac. For the experiments reported here,

Vdc represents the dc offset voltage while Vac denotes the periodic component. Vac = δ|Vdc|cos(2πνt) where the

symbol || implies the absolute magnitude of Vdc and δ refers to the control modulation depth. We may note that the

parameter σ in Lorenz equation may be correlated to Vd

R1C
where Vd = Vdc + Vac. Similarly, 1

R7C
to b and 1

R4C
+ Vd

R8C

to r. Some experimental results with this circuit are presented in Fig. 4. Plot (a) depicts the generalized bistability

with Vdc as the control parameter without any modulation (Vac = 0). The bifurcation diagram with increasing Vdc is

denoted by the maroon symbols. The circuit remains at the steady state S+ till Vdc = −1.5 Volt (the point ‘A’) and

then undergoes subcritical Hopf bifurcation and jumps to chaos where it remains even if we increase Vdc further. From

such a high value, we then decrease Vdc and notice that the circuit remains chaotic till Vdc
∼= −2.5 Volt (the point B).

Thus the bistable region BA is −2.5V < Vdc < −1.5V . These observations are very much similar to the theoretical

results in Fig. 1(a). We fix the value of Vdc = −2.1 V and show the chaotic time series in plot(b). Next we apply

control modulation of frequency ν = 1.3 kHz and modulation depth δ. As we increase δ > 0.014, the chaotic attractor

no longer remains stable. Plot (c) shows the temporal transition from the chaotic state to the controlled steady state

S+. The crisis occurs due to the collision with the UPO U+. Plot (d) shows the uncontrolled chaotic attractor (green)

and the controlled steady state (maroon symbol). We determine the crisis threshold amplitude at various values of

Vdc along the multistable regime. The modulation frequency is kept constant at 1.3 kHz. Plot(e) shows the crisis

threshold curve in δ versus Vac space. Very similar to the theoretical results [shown in Fig. 1(e)], the threshold is

maximum near the subcritical Hopf bifurcation point and decreases alongwith Vdc. Crisis threshold δ is minimum

near the uncontrolled crisis condition (Vdc ∼ −2.5 V. Plot(f) shows the crisis threshold curves in the modulation

depth versus the modulation frequency space at Vac = −2.1 Volt. We find the crisis threshold curve exhibits minimal

destruction amplitude at ν = 1.3 kHz and at 2.6 kHz. Thus the crisis resonance frequency is 1.3 kHz. Therefore

the experiments also demonstrate controlled destruction of chaos by small-amplitude parameter modulation and the

existence of two crisis resonance regions in the control modulation parameter space.

Notably, after Haken’s famous revelations24 of striking similarity between the two-level laser model and Lorenz
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equations, extensive experiments and theory have observed Lorenz-Haken chaos and subcritical Hopf bifurcation

in FIR lasers.10,11 Therefore, we believe, our concept of controlling multistability in autonomous systems is at least

applicable in thermal hydraulics and FIR lasers. Moreover, since subcritical Hopf bifurcation is a generic phenomenon

and the concept is based on periodic modulation of system parameters, we believe, this technique should have much

wider applicability. We have indeed successfully demonstrated theoretically similar destruction of chaos in the case

of optically injected multistable semiconductor laser.25 Details of these analyses would be published elsewhere.

We may remark that Lorenz model is a paradigm for the thermal fluid dynamics based systems where the parameters

r and σ refer to Rayleigh number and Prandtl number respectively. In actual fluid dynamical systems, the coexistence

of regular (unidirectional flow with mild fluctuations of velocity) and chaotic instability (bidirectional turbulent flow

with large fluctuations) states can not be ruled out, as evident from the recent experiments with a double-channel

natural convection test facility.12 This paper reports (i)sudden jump from steady flow to the oscillatory flow at a

critical condition and (ii)hysteresis between steady single-phase flow and bidirectional oscillatory two-phase flow.

We believe these features are signatures of subcritical Hopf bifurcation. The bidirectional oscillatory flow could be

undesirable in many applications, for instance, in the natural circulation coolant flow in the new generation natural

circulation nuclear recators12,13,26 based electric power generators, and therefore needs attention. Conventionally, the

operating regime is limited to avoid multistable regime. However, inside the multistable regime, the operating power

is higher and could be useful for handling large capacity power generation. While there may be other provisions to

control mild deviations from the designed state, we believe, tackling the chaotic state is a more complex problem.

In such circumstances, the small-amplitude modulation of some suitable parameters could be a very useful provision

to destroy the chaotic state and as a consequence, the system comes back to the designed state.2 Therefore, chaos

related problems may be resolved and extension of the operating regime within the multistable region looks feasible.

In general, a large class of nonlinear systems may be broadly classified into two categories: (i)autonomous and

(ii)periodically forced (or parametrically excited). In the current paper, we have considered some standard models

of autonomous systems and demonstrated controlled destruction of chaos by small-amplitude periodic modulation of

any system parameters. Multistability appears in these systems due to subcritical Hopf bifurcation. Now let us draw

attention to the recent past reports in the case of periodically forced (parametrically excited) systems and equivalent

multi-parameter, multidimensional diffeomorphisms.27,28 Indeed, the periodic modulation of system parameters have

been successfully applied28 to destroy an exceedingly complex (but organized) multistable scenario, namely the self-

similar organization of Gavrilov-Silnikov-Newhouse sinks29 in the case of Henon map. The modulation approach has

also been experimentally tested with a CO2 laser27 and a doped fibre laser.30 In these experiments, laser parameters

are driven by two periodic signals. The first periodic modulation makes the laser multistable where the coexisting

periodic states are created by saddlenode bifurcations due to the overlap of some or other subharmonic resonances.

The second modulation is then applied to destroy some of these stable periodic states suitably. Thus we believe the

periodic modulation of system parameters could play a very significant role in determining the multistable nature in

autonomous as well as periodically forced nonlinear systems.

To conclude, we have demonstrated that small-amplitude periodic modulation of any system parameters may lead

to global changes in the dynamics of the multistable systems that exhibit simultaneous coexistence in the phase space,

of chaotic and steady states. In particular, such modulation may lead to boundary crisis of the chaotic attractor due

to a collision with an UPO, and subsequent transition to the steady states. The threshold modulation depth for crisis

would be minimal if the modulation frequency is equal to (or multiples of) crisis resonance frequency that is close to

UPO rotation frequency. The parameter modulation concept works in the presence of noise as well. These results are

theoretically demonstrated with Lorenz’s equations and are in excellent agreement with experimental observations

with an analog circuit of Lorenz equations.

2In case of symmetric systems,like Lorenz equations, there are two steady states. In fluid dynamics applications also one may

correlate the same with two counterpropagating flows.12 If the system is designed for one steady state (the flow in a preferential

direction), a suitable mecahnism has to be kept under provision in addition to the control mechanism for destroying chaos.
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FIG. 1. Controlled destruction of Lorenz chaos. σ = 10, b = 1.2. These values remain unchanged in this figure. (a) The

bifurcation diagram with r as the control parameter. The steady state branch (X = Y = Z = 0), shown by the light blue

coloured horizontal solid line, undergoes pitchfork bifurcation at the point P and two stable nontrivial steady states S+ (green

curve) and S
−

(violet curve) are created. Each of these nontrivial steady states undergoes subcritical Hopf bifurcation at

the point ‘H’. The red curve, above the trivial steady state branch, represents the minimum-X values of the UPO U+ at

various values of r. Similarly, the red curve, below the trivial steady state branch, denotes the maximum-X values of the UPO

U
−

respectively. At the point ‘G’, both the UPOs become bi-asymptotic to the saddle steady state, creating figure-of-eight

homoclinic orbit (gluing bifurcation). (b) The phase protrait of the bi-asymptotic homoclinic orbit (red coloured) around the

saddle state (O) and the stable nontrivial steady states (denoted by violet and green coloured plus symbols). (c) Bifurcation

diagram with r as the control parameter. In the case of increasing r, the steady states (green and violet solid lines) undergo

subcritical Hopf bifurcations at r = rH (denoted by the point ‘A’). The system jumps to the chaotic state (the superposition

of green and blue shaded regions) for r > rH . On the contrary, when r is reduced from such a high value, chaos (blue shaded

region) coexists in the phase space with the steady states till there is another jump back to any of these steady states at r = rc

(denoted by the point ‘B’). (d)The temporal destruction of the chaotic attractor at r = 16.18 due to the collision with UPO U
−

and subsequent transition to the steady state S
−

. (e) The phase portraits of the Lorenz chaos (green) and the UPOs (red) at

r = 16.2488. The green and violet rectangular symbols in the middle of UPOs denote the stable steady states. The UPOs lie in

the boundary of the chaotic attractor that results in the crisis. (f) The phase portraits of the chaotic attractor, UPOs and the

steady states at r = 17.0. (g) The temporal destruction of Lorenz chaos due to the introduction of periodic modulation over r

with amplitude δr = 0.006 and frequency ν = 0.8 at r = 17.0. The crisis occurs due to the collision of the chaotic transients

with the UPO U+. Past the crisis the system jumps to controlled S+ state. (h)The crisis threshold amplitude δr versus r;

ν = 0.8.
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FIG. 2. (a)Chaos destruction boundaries in (δ−ν) space; r = 17, b = 1.2, σ = 10. The crisis resonance frequency νc = 0.825.

(b)steady-state resonance frequency νs (green curve), steady-state eigenfrequency νe (orange curve), and the UPO frequency

νu (violet curve). (c)The curves of plot(b) are enlarged in the vicinity of Hopf bifurcation. In addition, the crisis resonance

frequency νc is shown by the magenta curve. Notice that νc is in the close neighborhood of νu. (d)Bifurcation diagram with σ as

the control parameter; r = 17, b = 1.2. (e)Controlled crisis due to collision with U
−

UPO and subsequent transition to controlled

S
−

state; σ = 10, ν = 1.7, δ = 0.1. (f)Bifurcation diagram with b as the control parameter; r = 17, σ = 10. (g)Controlled

destruction of Lorenz chaos due to collision with U
−

and subsequent transition to controlled S
−

state because of b modulation:

b = 1.2, ν = 0.82, δ = 0.02. (h)controlled destruction of Lorenz chaos in the presence of noise. The maroon coloured time series

represent noisy Lorenz chaos; r = 17, b = 1.2, σ = 10, ρ = 1.0. As the modulation is introduced (ν = 0.8, δ = 0.01), the chaotic

attractor is destroyed and the system jumps to the noisy steady state under control (green time series).
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FIG. 3. An analog circuit of Lorenz equations.
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FIG. 4. Experimental demonstration of controlled crisis of Lorenz Chaos. (a)The bifurcation diagram with X(V ) versus Vdc

as the control parameter. While increasing Vdc, a jump is observed from the S+ steady state to the chaotic state at point A;

Vdc = −1.5 V (approx). When we decrease Vdc from such a high value, the chaotic state persists upto the point B;Vdc = −2.5

V (approx). (b)Chaotic time series at Vdc = −2.1 V. Under periodic voltage (Vdc = −2.1V, δ = 0.014, ν = 1.3 kHz), the

chaotic attractor is destroyed due to collision with the U+ UPO, and the system goes to the controlled S+ steady state. (d)The

uncontrolled Lorenz chaos (green) and the controlled S+ steady state (maroon). The parameter values are same as in (c).(e)The

crisis threshold curve in Vdc versus δ space; ν = 1.3 kHz. (f) The crisis threshold curve in ν versus δ space; Vdc = −2.1 V. This

curve exhibits two crisis resonance regions, one around νc = 1.3 kHz and the other around ν = 2νc.
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