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Abstract: A multiestimation adaptive control scheme for linear time-invariant (LTI) continuous-time plant with 
unknown parameters is presented. The set of discrete adaptive models is calculated from a different combination 
of the correcting gain β in a fractional order hold (FROH) and the set of gains to reconstruct the plant input under 
multirate sampling with fast input sampling. The reference output is given by a continuous transfer function to 
evaluate the continuous tracking error of all the possible discrete models. Then the scheme selects online the 
model with the best continuous tracking performance. The estimated discrete unstable zeros are avoided through 
an appropriate design of the multirate gains so that the reference model might be freely chosen with no zeros 
constrains. A least-squares algorithm is used to estimate the plant parameters. However, only the active model is 
updated by using a least squares algorithm.  The remaining possible models are updated by first calculating an 
estimated continuous-time transfer function, which results to be identical for all the models while their discretized 
versions are distinct in general. 
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1. INTRODUCTION  

It is well-known that the unstable either continuous or 
discrete plant zeros should be transmitted to the reference 
model in a model matching problem (Aström and 
Wittenmark, 1990). In the context of discrete-time 
controllers acting on continuous-time plants, an appropriate 
choice of the correcting gain β of a FROH (potentially 
including zero-order holds, ZOH, for 0β =  and first-order 
holds, FOH, for 1β = ) as well as the sampling period can 
locate some of the discretization zeros in the stable zone 
(Bilbao-Guillerna et al., 2005; Ishitobi, 1996; Liang and 
Ishitobi, 2005). However, this is not always possible 
because of the presence of unstable continuous-time zeros 
or because of the required range of the sampling period 
which can instabilize either the discretization or the intrinsic 
zeros. A solution of general applicability to avoid or 
circumvent this drawback is the use of multirate sampling 
techniques. A good selection of the multirate gains may 
make the estimated discrete zeros stable, (Alonso-Quesada 
and de la Sen, 2006; De la Sen and Bárcena, 2007; Moore et 
al., 1993; Morris and Neuman, 1981). However, the use of 
these techniques introduces a disadvantage that should be 
taken into account. Although the tracking of the desired 
reference can be achieved at sampling instants by the 
control law, the behavior of the output during the inter-
sample period may not be suitable enough. This behavior 
depends on the choice of β, the sampling period and the 
reconstruction method used to generate the continuous plant 
input from the computed control sequence at sampling 
instants. 
 
The main objective of this paper is to improve the inter-
sample behavior by an appropriate selection of the gain β 
and the multirate gains through a fully freely chosen 
reference model even when the continuous plant possesses 
unstable zeros. In order to achieve this objective, we 
introduce a parallel multiestimation scheme, (Bilbao-
Guillerna et al., 2005; Narendra and Balakrishnan, 1994 and 
1997). The various models of this scheme are obtained via 
different values of the gain β in the FROH and different 
multirate gains. Since the plant parameters are unknown 
they have to be estimated and the models composing the 
multiestimation scheme are time-varying. The main novelty 

of this paper compared with previous background work 
(Alonso-Quesada and de la Sen 2006, De la Sen and Alonso 
Quesada, 2007) is that the reference output is supplied by a 
stable continuous transfer function. Then the scheme is able 
to partly regulate the continuous-time tracking error while 
the controller is essentially discrete-time and operated by a 
FROH in general. However, since the controller is designed 
to be discrete, it is necessary to obtain a discrete transfer 
function from the continuous-time reference one. In this 
way, each discretized plant model possesses a different 
discrete model which is obtained via discretization of the 
continuous reference model under a FROH with its 
associated gain β. As a result, each estimated model tends 
asymptotically to a different reference one. In (Alonso-
Quesada and de la Sen, 2006), all of them converged 
asymptotically to the same reference model. The closed-
loop performance is evaluated for all the possible 
discretized plant models by calculating their corresponding 
plant control signal and testing and monitoring its effect on 
an estimated continuous plant. Then, a performance index 
evaluates the continuous tracking performance of the 
estimated outputs related to the reference ones and the 
switching scheme selects the one with the lowest value. The 
active model currently in operation is used to online 
parameterize a discrete controller for matching the 
corresponding discrete reference model. A minimum 
residence time between consecutive switches is required for 
closed-loop stability purposes, (Aström and Wittenmark, 
1990; Narendra and Balakrishnan, 1994 and 1997).  Finally, 
some simulations will be displayed to show the effect of the 
proposed scheme.  

 
2. DICRETE TRANSFER FUNCTION  

Since the controller is discrete-time and the plant is 
continuous-time, we need to generate a continuous-time 
signal from the discrete control input, before injecting it to 
the plant. Two different reconstruction methods are 
considered in order to generate such an input. One method 
is governed by the large sampling period while the other one 
is governed by the small sampling period. The continuous-
time plant is defined by the following state-space equations: 

( ) ( ) ( ); ( ) ( )Tx t Ax t bu t y t c x t= + =                 (1) 



 

     

where u(t) and y(t) are, respectively, the input and output 
signals, ( ) nx t ∈ℜ  denotes the state vector and A, b and cT 
are constant matrix and vectors of appropriate dimensions. 
 
2.1 Input Reconstruction Method I (Ruled by the 

large sampling period T) 
The plant input is generated by the following equation: 

( )1( ) k k
j k

u uu t u t kT
T

α β −−⎧ ⎫= + −⎨ ⎬
⎩ ⎭

                (2) 

for )' '( 1) ,t kT j T kT jT⎡∈ + − +⎣  and { }1,2,...,j N N∈ ≡ , 

where ku  is the input signal at t kT= and [ ]1,1β ∈ −  is the 
FROH correcting gain. T is the large sampling period 
associated with slow sampling rate of the output and 

' TT N=  is the small sampling period associated with the 

fast sampling rate of the input. In other words, the large 
sampling period is divided in N equal subperiods in order to 
generate the multirate input. It is possible to ensure the 
stability of the zeros of all the discretized plant models 
which relate the input and output sequences defined over the 
sampling period T by an appropriate choice of the multirate 
gains jα  since the discretized plant zeros are parameterized 
by such gains. The discrete transfer function is 

                        ( ) ( ) ( )H z B z A zβ β β=                               (3) 
The denominator of the transfer function does not depend 
on the choice of the gains jα  and it can be calculated as:  
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The numerator can be written as: 
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with Adj(.) and Det(.) denoting, respectively, the adjoint 
matrix and the determinant of the square matrix (.) and nI  
denoting the n-th order identity matrix. g is the vector of 
multirate gains with 
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The denominator can be rewritten as: 
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The coefficients ,jb  depend on the parameters of the 
continuous time plant, the large sampling period T and the 
correcting gain β  of the FROH considered in the 
discretization process. The value of the vector of multirate 

gains is relevant to stabilize the discrete plant zeros by 
appropriate choice of its components. Note that if we choose 

1jα =  for all j N∈ , then this reconstruction method 
becomes the common one obtained with a FROH without 
multirate sampling working at the large single sampling 
period T. 

2.2 Input Reconstruction Method II (Ruled by the 
small sampling period T’) 

In this method, the plant input is governed with the fast 
sampling and generated by the following equation: 
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for )' '( 1) ,t kT j T kT jT⎡∈ + − +⎣  and j N∈ , where 
( ) ': ( ( 1) )j
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The denominator of the transfer function is identical to that 
obtained in (4), while the numerator is 
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Now the multirate is ruled by the fast sampling rate because 
it is necessary to know the value of the input at the fast 
sampling instants to generate the continuous-time plant 
input. Note that if 0β =  both methods lead to the same 
transfer function.  
2.3 Compact Representation  
The discretized plant model can be described in a compact 
and clear way as 
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The above notation will be then useful in order to formulate 
properly the estimation scheme with the given expanded 
regressor. The coefficients of the numerator of the discrete 
transfer function can be rewritten as 
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- Remarks 1:  
a) The value of N is chosen to be the minimum one 
necessary to fix the polynomial of discrete zeros to 
prescribed coefficients. It means that 
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b) The elements ,jb  in the matrix M β  and 0M  of 
equations (12) are different for both reconstruction methods. 
As a result of this, a different multirate gains vector g is 
needed for each method to fix the discretized zeros in the 
same positions. 

3. CONTROL SCHEME 
A free-design LTI reference stable model given by  

( ) ( ) ( )m m mG s N s D s=                           (14) 
is used in order to generate the continuous-time reference 
signal to be tracked by the plant output. A model-matching 
type discrete controller is synthesized to generate the control 
sequence, so we need to obtain a discrete transfer function 
of (14). This discrete transfer function is 
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transfer function of a β-FROH and Z the Z-transform. 
'

, ( )mB zβ  contains the free-design reference model discrete 

zeros and 0, ( )A zβ  is a polynomial including the eventual 
closed-loop stable pole-zero cancellations. Such a stable 
polynomial is introduced when necessary to guarantee that 
the relative degree of the reference model is not less than 
that of the closed-loop system so that the synthesized 
controller is causal. In the approach of this paper, the 
multirate techniques allow to stabilize all the discretized 
plant zeros so that ( )

1( ) ( )B z b B zβ
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+=  with ( )B zβ
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monic polynomial. The perfect matching at sampling 
instants is achieved through the control signal: 
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where the controller polynomials are obtained from 
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 Figure 1: Basic control scheme 

4. MULTIESTIMATION SCHEME 
Different estimators compose the parallel multiestimation 
scheme. Each estimator is used to identify a different 

discretization of the continuous plant under any of both 
reconstruction methods. The main idea for scheme’s 
implementation is that all the estimator/controller pairs are 
running in parallel at the same time while calculating each 
control law, but only one of them actually generates the 
control law. Each controller parameterization is updated for 
all time although only one being active is generating the 
control signal. The closed-loop performance of all the 
models should be simulated by calculating its corresponding 
controller and applying the obtained input to an analogic 
(transfer function) estimated model of the continuous-time 
plant. Then, the obtained output is compared with the 
desired one. The strategy is to use the controller obtained 
from the best estimation model at each time interval. The 
closed-loop stability is guaranteed if the time interval 
between consecutive switchings is larger than an 
appropriate residence time. The estimated output for each 

thi  identifier at sampling instants is calculated as, 
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II.C. en  denotes the number of models in the 
multiestimation scheme. In order to simplify the notation 
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Figure 2 shows a typical multiestimation scheme, where the 
estimated outputs are compared with the reference output. 
ˆ ( )kG D  denotes the estimated continuous transfer function, 

where dD dt  is the time-derivative operator, formally 

equivalent to the Laplace operator s, with 0 1D =  and 
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Fig.2: Multiestimation scheme 
4.1 Estimation Method 
Only the active estimator is updated by using following 
least squares estimation algorithm  
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where ( ) ( )ˆk kc c
k k ke y y= −  is the identification error and ck 

denotes the active model at kth sample. To get the estimated 
values for the rest of estimator we use the active one. Since 
we know the order of the plant transfer function, it is 
possible to obtain the estimated parameters of the 
continuous transfer function from the currently active 
discretization estimation model. Once the estimated 
continuous transfer function is updated we can obtain the 
rest of discretization estimation models via discretization of 
such an estimated continuous transfer function. The 
following steps describe this method: 
a) Obtain ( )

1
ˆ kc
kθ +  and ( )

1
kc

kP +  from (18). 

b) Calculate 1
ˆ ( )kG D+  from ( )

1
ˆ kc
kθ + , i.e., from ( )ˆ kcHβ . 

c) Obtain ( )
1

i
kM + from 1

ˆ ( )kG D+ for each model.  



 

     

d) Build ( )
1

ˆ i
kθ +  from ( )

1
i

kM +  for 1,..., 1, 1,...,k k ei c c n= − + . 
e) Update the multirate gains vector via (11) so that the 
estimated discrete numerator remains identical. 
 
Note that in the third step the matrix ( )

1
i

kM +  can be obtained 

from 1
ˆ ( )kG s+  for each model, because its elements do not 

depend on the multirate gains, which are updated later in the 
last step. The estimated matrixes ˆ

kA , k̂b  and ˆkc  in (1) can 

be directly obtained from 1
ˆ ( )kG D+  by first selecting any 

state-space like, for instance, controllability or observability 
forms or a canonical real state-space realization. In this 
sense, note that any state-space realization leads to the same 

( )
1

ˆ i
kM + . 

4.2 Tracking Performance index 
The objective of the supervisor is to evaluate the tracking 
performance of the possible controllers connected to the 
plant with the aim of choosing the current controller from 
the set of parallel parameterized controllers, each of them 
corresponding to a different value of the gain β. The 
following estimated tracking performance index is 
proposed, 

     ( ) ( )( )2( ) ( )

0
ˆ

k Ti k j i
k m

j k N
J y jT y jT dλ τ τ τ−

= −

= + − +∑ ∫          (19) 

for 1 ei n≤ ≤  and, where, (0,1]λ ∈ , 0N > , my  is the 

reference continuous output and ( )ˆ iy  the estimated one 
corresponding to the thi  estimation process. Note that the 
use of the identification error in the performance index is 
not sensible in this problem since the current plant output is 
generated by only one active FROH used for the current 
plant discretization. 

4.3 Switching Rule 
Now, the switching rule for the basic adaptive controller 
reparameterization is obtained from the performance index 
as follows: 
 
- Let the switching sampling times sequence be denoted by 

{ }(1) (2) ( ), ,...,TS t t t π=  where π, which may be finite or 

infinite countable, is the number of consecutive switching 
instants in increasing order and ( )( 1) ( )i i

r rt t N Tτ+ − ≥ =  (a 

known minimum residence time) for all ( )it , ( 1)it TS+ ∈ . 
Thus, the ck-estimation scheme with 1 k ec n≤ ≤ , which 
parameterizes the basic adaptive controller for all 0k ≥  at 
any switching time in TS is updated as follows. Assume that 
the last switching time for the controller re-parameterization 
was ( )it . Thus, for each current k sampling time, define the 
auxiliary integer variable: 

 

( )( ) ( ): ; ,i j
k k k ec Arg i J Min J i j n⎡ ⎤= = ∈⎣ ⎦ , all integer 1k ≥  

if ( )i
rkT t τ≥ +  then k kc c←  end_if 

if 1k kc c −≠  then ( 1)it kT+ ←  and { }( 1), iTS TS t +←  end_if 

 
It is well-known that there is always a minimum residence 
time that guarantees the closed-loop stability under switched 
parameterizations. This value could be obtained from an ‘a 
priori’ knowledge or from experimental research. If a 
minimum residence time at each parameterization 
guaranteeing close-loop stability is not available, then it 
may be updated online as follows. First, start with a very 
small value. Then increase it with small positive increments 

until finding a proper value while the transients are found to 
heuristically be compatible with stability. 

5. TECHNICAL RESULTS OF STABILITY OF 
THE PLANT ZEROS AND ITS ESTIMATES 

- Definition 1: Let ( )zρ  be a polynomial of degree m. 
Then, the class ( ),Cρ δ ε  is the set 

( ) ( ){ ( ) }, : ( ) : ( ) ( ) : deg ( ) deg ( )C z z z z z mρ ε δ ρ ε δ ρ∂ = = + ∂ = =

(20) 
Note that according to definition 1 any polynomial ( )zδ  of 
degree less or equal to m is valid to establish the 
class ( ),Cρ ε∂ . 
- Proposition 1: Assume that ( )zρ  is a stable polynomial 
(i.e., ( ) 0zρ = ⇔ 1z γ≤ − , for some γ +∈ ).  Then, it 

exists *ε +∈  such that the class ( ),Cρ ε∂  is formed by 

stable polynomials for all *0,ε ε⎡ ⎤∈ ⎣ ⎦  fulfilling 

( ) ( )deg ( ) deg ( )z zρ∂ ≤  for each ( )z∂ . 

- Proof: Consider ( ) ( ) ( )z z zδ ρ ε= + ∂  for each prefixed 
( )z∂  of the same (or less) degree as ( )zρ . The zeros of 

( )zδ  satisfy the characteristic equation ( )1 0
( )
z
z

ε
ρ
∂

+ = . 

Then, from the root locus technique, the zeros 
( )1,...,iz i m=  of ( )zδ  are those of ( )zρ  as 0ε = . These 

zeros satisfy 1iz γ≤ −  for some ( )0,1γ ∈ ∩ . From 

continuity of the root locus, there exists *ε +∈  for each 
given 0γ γ+ ∋ <  such that for all *0,ε ε⎡ ⎤∈ ⎣ ⎦  all the zeros 

of  ( )zδ  are in [ ]01iz γ≤ −  with *ε  being dependant on 

γ  and the polynomials ( )zρ  and ( )z∂ . Since all the zeros 
are in 1iz < , all the polynomials in the class ( ),Cρ ε∂  are 

stable for all *0,ε ε⎡ ⎤∈ ⎣ ⎦  and for any ( )z∂ of degree less 

than or equal to that of ( )zρ . 
- Alternative proof of Proposition 1: Consider 0 1γ< ≤  
such that any complex z satisfying ( ) 0zρ =  is inside the 

open region { }: : 1R z zγ γ= ∈ < −C . Assume also that 
* ( ) ( )z zε ρ< ∂  for 1z γ< − . Then from Rouché 

Theorem for zeros of analytic functions (De la Sen and 
Bárcena, 2004), all the zeros of ( )zδ , 

( ) ( ) ( )z z zδ ρ ε= + ∂ , are also in 1 1z γ< − < . 
Note that in the alternative proof of Proposition1 there 
exists ε +∈  such that for * ( ) ( )z zε ε ρ+ ≤ ∂  with 

1z γ< −  all the zeros of ( )zδ  are in 01z γ γ< − <  for 

some ( )0 0,γ γ∈ . 
 
Now consider ( ) ( ) ( )H z B z A zβ β β=  and its estimates 

( ) ˆˆ ˆ ( ) ( )iH B z A zβ β β=  for 1,..., ei n= . Note that 
( ) ( )ˆ ˆ ˆ( ) ( ) ( )kc iB z B z B zβ β β= =  since the zeros of all the 

estimates are fixed to prescribed time-invariant stable 
positions and also ( ) ( )ˆ ˆ ˆ( ) ( ) ( )kc iA z A z A zβ β β= =  since they are 
obtained from equation similar to (4) by substituting ψ  by 
the corresponding ˆ kψ  associated to the continuous-time 
plant estimated at the sampling instant kT . Now define the 
time-varying polynomial of parametrical error of zeros as 



 

     

( ), , ,
0 0

ˆ( )
m m

i i
k i i k i k

i i

B q b b q b qβ
= =

= − =∑ ∑                 (21) 

- Corollary 1: Assume that the discrete plant numerator 
( )ˆ( ) ( ),BB z C B z

ββ β ε∈ . Then ( )B zβ  is stable for any 

*0,ε ε⎡ ⎤∈ ⎣ ⎦  with ( )* 0,1ε ∈  such that *( )
1ˆ ( )

B z
B z

β

β

ε ε≤ ≤ <  

for 1z = .                     
Note that the scalar ε  plays the role of a normalizing gain 
of the parametrical error which vanishes if ε  goes to zero. 
- Remarks 2: a) As a result of Corollary 1, the set of 
multirate gains, which is calculated to stabilize the active 
estimated numerator, can locate the discrete plant zeros in 
the stable zone as well if the estimates are not far from the 
real parameters of the plant and are located near prescribed 
stable fixed positions by using algorithm (2) or (8) and 
equation (11). 

b) The H∞ -norm of the stable transfer function 
( )

ˆ ( )
B z
B z

β

β

 is 

less than unity. 
c) The following degrees condition 

( ) ( ) 1 0ˆdeg ( ) deg
0

m n for
B z B

m n forβ β

β
β

= − =⎧
≤ = ⎨ = ≠⎩

 

guarantees that the number of zeros of ( )B zβ  is the same as 

that of ( )B zβ  which are stable under corollary 1. 
- Proposition 2: The plant zeros are stable if any of the two 
conditions below holds   

(i) *
Mbε ≥  where  

( ), ,1 10 0
( )

m m
i

M i k i kq qi i
b b Max B q Max b qβ= == =

= ≥ =∑ ∑  

(ii) * bε ≥ where 

[ ]
( )( ) ( ), ,0,2 1 1 0

: cos sin ( )
m

i
i k i kq q i

b Max b j Max B q Max b qβϕ π
ϕ ϕ

∈ = =
=

= + ≥ = ∑

 0k∀ ≥ , where 1j = −  is the complex unity. 
- Proof: Under the given conditions, the plant numerator 
belongs to the class defined in Proposition 1 whose 
members are stable by construction. 
 
Note that condition (i) is more restrictive than condition (ii) 
in Proposition 2 and that Proposition 2(ii) implies 
Proposition 2(i). As a particular and usual case, consider 
that the elements ib  and ,î kb  possess the same sign. This is 
a reasonable assumption based on ‘a priori’ knowledge. 
Then Proposition 2 with condition (i) is achieved under the 
following conditions, 

If ,î k ib b≥  then 
*

, ,
ˆ ˆ

1i k i i k ib b b b
m

ε
− = − ≤

+
 for 

1,..., 1i m= +  

If ,î k ib b<  then 
*

, ,
ˆ ˆ

1i k i i i kb b b b
m

ε
− = − ≤

+
 

for 1,..., 1i m= +    
- Remark 3: The closed-loop stability of the overall parallel 
multiestimation scheme is guaranteed by respecting a 
minimum appropriate residence time between two 
consecutive switches of active parameterized controller. A 
lower-bound of such a residence time may be evaluated 
from online measurements checking the relative stability of 
the experiment or computed analytically from worst-case 
absolute upper-bounds of the plant parameter (see for 
instance, [Bilbao-Guillerna et al., 2005]).                          

6. SIMULATION RESULTS 
The first simulation is displayed for the following 
continuous-time transfer function 

                   ( ) ( )2( ) 1 6 8G s s s s= − + +                    (22) 

The continuous reference transfer function is chosen as 
                      ( ) ( )2( ) 2 2 1mG s s s s= + + +                   (23) 

Note that the plant transfer function possesses an unstable 
zero at 1s =  which is not transmitted to the reference 
model. A set of 11 discretization processes, as described in 
previous sections, composes the multiestimation scheme. 
Each one uses a different gain for the FROH, being the 
respective gains obtained from: 
                  ( ) 1 0.2( 1)i iβ = − −   for  1 11i≤ ≤                 (24) 

The initial value of the estimated continuous transfer 
function is 

               ( ) ( )2
0

ˆ ( ,0) 5 11 10G D D D D= − + +               (25) 

In the first simulation Reconstruction Method II with the 
sampling time being 0.25 seconds is used. The multirate 
gains are chosen so that the numerator is monic with 
discretization zeros located in 0.5z = . Initially, the active 
discretization process is that with 0β = , i.e., 0( ) (6)cβ β= . 
The residence period is 8 samples and the reference input is 
a square signal. Figure 3 shows the obtained output and the 
reference one. Figure 4 compares, in the stationary regime, 
the output obtained with the multiestimation scheme with 
that obtained in case of maintaining ( ) 0kcβ =  during the 
whole simulation. It becomes apparent how the proposed 
multiestimation scheme reduces the inter-sample tracking 
error compared to that obtained with a ZOH by selecting the 
model with the best tracking performance behavior. Figure 
5 shows the evolution of the active value of β and Figure 6 
displays the evolution of the multirate gains jα . Note that 

when the current value of β is 0, there are only two 
multirate gains. 3α  appears when 0β ≠  and it is removed 
as 0β =  since the ZOH is able to stabilize the discrete 
plant zeros with ' 2T T=  and then only two multirate 
gains.  

 
Fig.3: Plant output and reference using Reconstruction Method II 

 
Fig.4: Comparing the multiestimation scheme with the use of a 

ZOH in steady-state 



 

     

 
Fig.5: Evolution of the active value of β 

 
Fig.6: Evolution of the multirate gains 

The second simulation is displayed for the following 
continuous-time unstable transfer function 

                       ( ) ( )2( ) 1 6G s s s s= − − −                       (26) 

for the Reconstruction Method I with T = 0.8s and a step 
signal as reference input. The remaining parameters are the 
same as the ones used in previous simulation. Figure 7 
shows the plant output, while the evolutions of the active 
value of β and multirate gains are displayed in Figure 8 and 
9, respectively. It has been observed that the tracking error 
of the switching scheme is lower than the one obtained from 
the use of a ZOH during the whole simulation. 

7. CONCLUSIONS 
A multiestimation scheme, consisting of a set of 
discretization models running in parallel, with a discrete-
time model matching controller for an unknown LTI 
continuous-time plant is presented. Each of these models is 
calculated from a different combination of the correcting 
gain β of a FROH and the set of multirate gains to 
reconstruct the plant input. Unstable zeros of the discretized 
estimated plant are avoided through an appropriate design of 
the multirate gains so that the reference model might be 
freely chosen and perfect matching is achieved at sampling 
instants without requiring the transmission of the eventual 
discrete plant zeros to the reference model. The transient 
response within the inter-sample time period is improved 
compared to the use of a single model scheme. The tools for 
such an improvement are the appropriate on-line choice of 
the correcting gain β and multirate gains corresponding to 
the discretization process which provides the best behavior. 
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Fig.7: Plant output and reference one with Reconstruction Method I 
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Fig.8: Evolution of the active value of β 
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Fig.9: Evolution of the multirate gains 
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