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Abstract
In this paper a novel platoon model is presented. Non-

linear aerodynamic effects, such as the wake generated
by the preceding vehicle, are considered, and their in-
fluence in the set up of a Adaptive Cruise Controller
(ACC) is investigated. To this aim, bifurcation analysis
tools are exploited in combination with an embedding
technique independent from the vehicles number. The
results highlight the importance of a proper configu-
ration for the ACC in order to guarantee the platoon
convergence to the desired motion.

Key words
Interconnected systems, nonlinear coupling, partial

differential equation, traveling wave, platoon.

1 Introduction
In the recent years the technological advances in

autonomous/self-driven vehicles have focus the atten-
tion also on the problem of formation control. In
this framework, terrain vehicles platoons have received
great interest from the scientific community and many
projects have already been funded to improve their
management technologies [SARTRE, 2013]. One of
the oldest and most effective control strategies to en-
force a certain formation in a vehicle platoon is the
Adaptive Cruise Control [Konrad, 2014]. However, de-
spite its successful implementation and the numerous
variants, there is no general analytic method to set it up
for a large number of units. Moreover, ACC is com-
monly referred to the linearized problem, and it is still
not clear how possible nonlinear effects may affect the
overall behaviour.
In this paper we introduce a novel model for a simple

platoon featuring a nonlinear drag, that takes into ac-
count also the effects due to the wake generated by the
preceding vehicle. Such a model will be investigated in
a classical nonlinear bifurcation analysis framework by
transforming the problem via a recent embedding tech-
nique independent from the vehicle number. The aim is

to conceive a simple though effective approach able to
provide qualitative tools for inferring whether a certain
configuration of the ACC controller may cause the rise
of complex phenomena, such as, for instance, traveling
waves.

2 Platoon model
Hereafter, we will consider a 1D platoon of identical

vehicles moving along a closed path with no intersec-
tions, i.e. a circuit. The platoon is supposed to be in
jam condition, i.e. the first unit sees the last one ahead
of itself. Let us consider for each vehicle a simple,
though widespread in the literature, model of the form
(see, e.g., [Kwon and Chwa, 2014] and the references
therein):

ai =
1

m

(
ui − f(si−1 − si, vi)

)
, (1)

where si, vi = ṡi, and ai = s̈i are respectively its ab-
solute position along the circuit, the speed, and the ac-
celeration. In (1) m stands for the vehicle’s mass, ui is
its control input1, and f is a nonlinear drag depending
on both the speed and the distance from the preceding
vehicle:

f(si−1, si, vi) = αvi
(
(vi − ν)2 − β(∆si − µ)

)
+ γ ,

where ∆si = si−1−si. Drag f accounts for a constant
friction component, namely γ > 0, and the friction de-
pending from air resistance, that is assumed to grow as
the cube of the speed according to coefficient α > 0.
This latter component of the drag is also supposed to
be lightened by the presence of the preceding vehicle
as a consequence of the wake, whose effects, tuned by
β > 0, are represented by a local minimum at vi = ν
when the inter-vehicular distance is at ∆si = µ (see
Figure 1). For the sake of simplicity, hereafter we as-

1Here we neglect the actuator dynamics, so the control acts at the
same level of the acceleration.
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Figure 1. The nonlinear drag for different values of the inter-vehicle
distance from the preceding one forα = 1, β = 0.1, and γ = 1.

sume that the control goal is to move the platoon along
the circuit according to a desired plan featuring con-
stant velocity vi = ν and constant inter-vehicle dis-
tance ∆si = µ for each unit. In particular, the desired
motion chosen for each vehicle is given by

ξi = νt− iµ .

Then, by defining the error with respect to the desired
motion as ei = si − ξi, and by denoting

ṡi = vi = ν + ėi

s̈i = ai = ëi

∆ei = ei−1 − ei
∆si = ξi−1 + ei−1 − ξi − ei = µ+ ∆ei

∆vi = vi−1 − vi = (vi−1 + ν)− (vi + ν) = ∆ėi ,

one can describe the vehicle model in terms of the dis-
placement ei:

ëi =
1

m

(
ui − α(ν + ėi)

(
ė2i − β∆ei

)
− γ

)
=

1

m

(
ui − ανė2i − αė3i

+ ναβ∆ei + αβėi∆ei − γ
)
.

In order to conceive a simple strategy for controlling
such a platoon formation, we also assume that infor-
mation or estimates of position and speed can be used
to move each vehicle when alone, due to excessive dis-
tance from the others or sensor failures. Under such
an hypothesis, an intuitive approach can be developed
according to the following reasoning.

– First, the constant friction γ can be compensated
by means of a static input of the same value.

– Then, to avoid that large displacements can turn
into vehicle collisions, a widely used strategy, such
as the Adaptive Cruise Control (ACC, see [Konrad,
2014] and references therein), can be exploited.

It is also worth of observing that ACC in its standard
formulation has the form of a Proportional-Derivative
(PD) function of the inter-vehicular position, and then
it can be conveniently cast in the present problem as a
PD control input computed on the ∆e’s.
Summing up, the chosen control input ui is designed

as

ui = γ −Hdei −Hsėi (2)
+Kp∆ei + Tp∆ėi −Kf∆ei+1 − Tf∆ėi+1 ,

where ACC has been set up considering both the pre-
ceding and the following vehicles.
It is worth underlining that the isolated vehicle model

is

ëi =
1

m

(
−Hdei −Hsėi − ανė2i − αė3i

)
.

In such a case, to assure the (local) convergence of the
vehicle to the desired path, the coefficients Hd and Hs

must be set positive. Also, notice that this component
of the controller could be able, if the position and speed
information are sufficiently accurate, to solve the prob-
lem by itself. However, completely neglecting the pres-
ence of the other vehicles is dangerous, and a collision
avoidance strategy such as ACC turns out necessary.
Therefore, if the collisions are considered a primary

risk or the navigation system is not perfectly reliable, it
is reasonable to set up ACC in order to be at least strong
as much as the rest of the control actions. This is indeed
the scenario considered in the rest of the paper.

3 Traveling waves investigation
Model (1) provided with the control input (2) may be

affected by local instability because of the wake. In-
deed, the drag reduction due to this aerodynamic phe-
nomenon is able to make the total friction less than γ.
Therefore, when the vehicle approaches the preceding
one a little bit closer than µ, the static component of the
control input turns out bigger than the actual friction,
and its effect results in increasing the forward acceler-
ation. Hence, if the other two components of the con-
trol input are not properly designed, the platoon may
diverge from the desired formation.
In the following we develope a qualitative analysis

tool, based on the PDE embedding approach described
in [Innocenti and Paoletti, 2015], to investigate if a cho-
sen set of controller coefficients is compatible with the
existence of traveling waves (see also [Paoletti and In-
nocenti, 2015]).



Let us introduce the embedding variable x ∈ R and
the interpolating function ξ(t, x), so that

ei(t) = ξ(t, xi)

δx = xi − xi−1 .

Then, ėi(t) = ∂tξ(t, xi) and ëi(t) = ∂ttξ(t, xi).
Moreover, if the sought solution is sufficiently regular
with respect to x, the following approximations can be
taken into account:

ei+1(t) ≈ ξ(t, xi) + ∂xξ(t, xi)δx

ei−1(t) ≈ ξ(t, xi)− ∂xξ(t, xi)δx
ėi+1(t) ≈ ∂tξ(t, xi) + ∂xtξ(t, xi)δx

ėi−1(t) ≈ ∂tξ(t, xi)− ∂xtξ(t, xi)δx

∆ei = ei−1(t)− ei(t) ≈ −∂xξ(t, xi)δx
∆ei+1 = ei(t)− ei+1(t) ≈ −∂xξ(t, xi)δx

∆ėi = ėi−1(t)− ėi(t) ≈ −∂xtξ(t, xi)δx
∆ėi+1 = ėi(t)− ėi+1(t) ≈ −∂xtξ(t, xi)δx .

Substituting the above quantities into the single vehicle
equation and removing the index i, since all the platoon
units are the same, one obtains the PDE model

∂ttξ =
1

m

(
−Hdξ −Hs∂tξ − δx(Kp −Kf )∂xξ

− δx(Tp − Tf )∂xtξ − αν∂tξ2 − α∂tξ3

− ναβδx∂xξ − αβδx∂tξ∂xξ
)
.

In order to investigate the existence of traveling waves,
the moving coordinate

ζ = ct+ kx

is introduced, where c and k are referred to as angular
frequency and wave number:

ξ(t, x) = ξ(ζ)

∂tξ(t, x) = c∂ζξ(ζ) = cξ̇(ζ)

∂xξ(t, x) = k∂ζξ(ζ) = kξ̇(ζ)

∂ttξ(t, x) = c2ξ̈(ζ)

∂xtξ(t, x) = ckξ̈(ζ) .

By substituting the above quantities into the PDE
model, one finds the so called reference ODE (see [In-
nocenti and Paoletti, 2015])

ξ̈ + aξ̇ + bξ = − pξ̇2 − qξ̇3 , (3)

where the following coefficients have been introduced
for the sake of simplicity

K =
Kp −Kf

ναβ

T =
Tp − Tf
m

% = δxk

a =
cHs + %ναβ(K + 1)

mc(c+ %T )

b =
Hd

mc(c+ %T )

p =
α(νc+ β%)

m(c+ %T )

q =
αc2

m(c+ %T )
.

System (3) must now be investigated in search of a pe-
riodic solution ξ(ζ+τ) = ξ(ζ). To this aim, we exploit
a standard bifurcation analysis approach. In particular,
since (3) has order two, we can look for possible limit
cycles encircling the equilibrium in ξ = ξ̇ = 0 when
this latter turns unstable. Then, we just enforce a Hopf
bifurcation scenario by choosing

a < 0 , a2 < 4b . (4)

Hence, for each (small) ε > 0, we obtain the possible
dispersion curve

%(c) =
cHs − εmc2

εmcT − ναβ(K + 1)
, (5)

valid if c+ %(c)T 6= 0. It is worth stressing that, when
the dispersion curve of the PDE model is brought back
to the original platoon, it boils down to a set of points
(c, %(c)), since only certain wave numbers are compat-
ible with the number N of vehicles in the platoon, i.e.
the platoon length Nδx with respect to the embedding
variable x (see [Innocenti and Paoletti, 2015; Paoletti
and Innocenti, 2015] for further details).
Moreover, observe that conditions (4) do not guar-

antee the existence of a limit cycle by themselves,
since the Hopf bifurcation can happen in two vari-
ants, namely the super- and the sub-critical cases (see,
e.g., [Marsden and McCracken, 2012]). Therefore, the
actual existence of the limit cycle in the reference ODE
model must be checked with other tools, such as nu-
merical simulations.

4 Numerical example
In this section a toy model (not related to any real

world platoon) is used for the sole purpose of illustrat-
ing the tools developed in the previous section to in-
vestigate the existence of traveling waves in a jammed
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Figure 2. Values assumed by the quantity a2 − 4b in the first sce-
nario for different values of ε.

circular platoon. The vehicle parameters are

m = 1 , α = 1.0 , β = 0.1 , γ = 1 ,

while the objective formation is characterized by

µ = 2 , ν = 1 .

The coefficients of the control input component based
on the navigation system are

Hd = 0.10 , Hs = 0.30 ,

privileging the information/estimate of the speed over
the position. Notice, this is a common situation in real
world vehicles. In such a framework, we want to in-
vestigate if the addition of a ACC strategy may induce
traveling waves in the platoon.
As first scenario let us consider the following param-

eters for the ACC controller:

Kp = 0.06 , Tp = 0.55 , Kf = 0 , Tf = 0 .

Even if the Hopf conditions (4) are satisfied for certain
values of c and the related %, see Figure 2, numerical
simulations of the reference ODE system (3) exclude
the existence of limit cycles. Therefore, according to
our previous analysis, we do not expect the platoon to
exhibit traveling waves when the ACC control input is
configured with the above parameters. Figure 3 and
Figure 4 show one of many similar numerical simula-
tions obtained for random starting conditions close to
the desired motion of the platoon: Each vehicle reaches
the desired position, and all the inter-vehicle distances
∆ei remain positive.
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Figure 3. Vehicle displacements in the first scenario.
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Figure 4. Inter-vehicle distances in the first scenario.

As second scenario, let us configure ACC with the fol-
lowing parameters:

Kp = 0.06 , Tp = 0.01 , Kf = 0 , Tf = 0 .

Introducing the above numbers in (4) we obtain a num-
ber of possible Hopf bifurcation scenarios, where, this
time, the reference ODE shows actual limit cycles in
numerical simulations. The dispersion curves in Fig-
ure 5 are derived from (5) for ε ranging from 0.01 to
0.50. Their graph is restricted to the cases in which a
limit cycle exists. Therefore, we expect the platoon to
show traveling waves in this second scenario. In par-
ticular, since % turns always out negative, the wave is
supposed to move backward along the platoon, just as
one would expect from the asymmetric configuration of
ACC, that allows a perturbation to move from a vehicle
to the following one, but not to the preceding. Gener-
ally speaking, we also expect the wave to depend on
the vehicles number. It is also worth stressing that the
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Figure 6. The traveling wave found in the second scenario.

platoon could be able to sustain multiple waves, since
nonlinear systems are not limited to a single stationary
solution. However, the developed tool does not provide
any information on the stability of each possible wave,
that in turn could not be attractive for the neighbor tra-
jectories. To check for waves existence we again rely
on numerical simulation. Figure 6 illustrates a platoon
of 20 vehicles initialized in random conditions close
to the desired motion. In less than 500 time steps the
system trajectory converges to the traveling wave high-
lighted in Figure 7. The spatial profile of the wave at
the end of the simulation is reported in Figure 8, and it
shows that the spatial period comprises 4 time periods,
that is ncφ = N%, φ being the time period and n = 4.
Observe that %/c = nφ/N = −2.81 is compatible with
the computed dispersion curves, but it states that a time
interval equal to 2.81 along the temporal wave corre-
sponds to a single unit (vehicle) in the spatial wave.
Hence, it suggests that for a time period equal to 14.05,
as in this case, the solution of the reference ODE may
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Figure 7. The traveling wave found in the second scenario.
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Figure 8. Comparison between the displacement from the desired
motion of a single vehicle (blue) after the transient, and the spatial
profile of the platoon displacements at the end of the simulation (red).
The two graphs have been aligned for the sake of clarity.

be just a raw approximation of the actual platoon wave,
because of the little number of units per period. In Fig-
ure 9 the periodic motion of a single vehicle is com-
pared with the periodic solution of the reference ODE
for ε = −0.03 and c = 0.95.

5 Conclusions
In this paper we have introduced a novel nonlinear

model for describing a platoon of identical terrain ve-
hicles, moving in a circuit. Each unit has been assumed
subjected to a constant friction and to a nonlinear drag
featuring aerodynamic effects depending also on the
wake from the preceding one. The desired formation
consisted of evenly distributed vehicles moving at con-
stant speed. Each unit has also been assumed to have
a minimal knowledge about its own positioning along
the circuit, as well as about the inter-vehicle distances
with the preceding and following units. Moreover, a
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ACC controller has been set up according to two differ-
ent configurations, and the possible rising of complex
phenomena has been investigated by mean of bifurca-
tion analysis tools exploiting a recent embedding tech-
nique independent from the vehicles number. The re-

sults show that a wrong configuration of the ACC con-
troller can drive the platoon formation to instability and
to the rise of self-sustained traveling waves.
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