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Abstract
This paper investigates the multistability phenomenon

and its control in a simple chaotic circuit with a pair of
light emitting diodes proposed by Volos and collabora-
tors (Nonlinear Dyn. 89:1047-1061, 2017). The bifur-
cation analysis reveals that chaos occurs in the circuit
via period-doubling transition and symmetry-restoring
crisis scenarios. In addition for a suitable parameters
setting and different initial conditions, the circuit ex-
hibits the coexistence of four disconnected periodic and
chaotic attractors. This striking feature of the circuit is
further characterized by computing the cross sections
of the basin of attraction in which we define the set
of initial conditions where each attractor can be found.
Furthermore, due to the inconveniences of multistabil-
ity behavior in many nonlinear systems, the control of
this phenomenon is discussed by using the linear aug-
mentation scheme. It is proved that by choosing the
specific control parameters, the transition from multi-
stable system to monostable system is achieved. Fi-
nally, an appropriate electronic circuit capable to emu-
late the dynamcis of the system is designed and some
analog simulations are point out to validate the numer-
ical analysis.
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1 Introduction
Chaos theory has applications in several fields of

studies including, mathematics, physics, chemical re-
actions, biology, ecology, neural networks, robotics,
fuzzy logic, electrical circuits, cryptosystems [Gas-
pard, 1999; Kyriazis, 1991; Sprott et al., 2005; Ai-

hira et al., 1990; Lankalapalli and Ghosal, 1997; Yau
and Shieh, 2008; Matouk and Agiza, 2008; Chien
and Liao, 2005] and so on. In the last two decades,
considerable efforts have been devoted to the inves-
tigation of simple chaotic circuits. The simplicity is
in terms of simple mathematical model and minimum
number of electronic components used to implement
the system. Concerning the latter case, many sim-
ple nonlinear chaotic circuits have been reported. Ex-
amples include Hartley’s oscillator based on a junc-
tion field effect transistor and a tapped coil [Pham et
al., 2013], two-element memristive time-delay system
[Muthuswamy and Chua, 2010], three-element circuit
with a nonlinear active memristor [Barboza and Chua,
2008], four-element Chua’s circuit, the simple current-
tunable chaotic oscillators using floating or virtually
grounded diode [Srisuchinwong and Munmuangsaen,
2012] and so on. However, the construction of sim-
ple dynamical systems with simple mathematical de-
scription is still an open research direction and merit
to be explored. In this regard Volos and colleagues
[Volos et al., 2017] investigated a simple chaotic cir-
cuit with a hyperbolic sine function and exploited in a
sound encryption scheme. The dynamics of the sys-
tem is investigated in terms of phase portraits, Poincaré
section, power spectrum, Lyapunov exponents and bi-
furcation diagram. The experimental verification as
well as the application to sound encryption are also in-
cluded. However, the different bifurcation structures
showing different routes to chaos are not investigated
in detail. In this contribution, we consider the same
model with one novel additional constant parameter in
order to make very easy its circuit realization and char-
acterize in detail some dynamical behaviors includ-
ing bistable phenomenon, symmetry restoring crisis bi-
furcation and multistability (coexistence of attractors).
One of the main motivations of this work is to find the
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regions in the parameter space in which the system ex-
periences coexisting attractors in order to control them
to a desired state.
The rest of the paper is organized as follows. The

mathematical model is presented in Sec. 2. Numerical
simulations are investigated in Sec. 3. The dynamics of
the model is explored in detail by using some common
numerical tools such as time series, phase portrait plots,
bifurcation diagrams associated with the largest Lya-
punov exponent. The phenomenon of coexisting attrac-
tors and its control is examined. In order to verify some
dynamical behaviors reported numerically, we present
in Sec. 4 some Pspice based analog simulations. The
results are compared to those obtained numerical and a
good agreement is observed. Some concluding remarks
are given in Sec. 5.

2 Mathematical Model
The system investigated in this contribution is the

model proposed by Volos and collaborators [Volos et
al., 2017] with one novel additional constant parameter
namely ρ. The resulting model is given by the follow-
ing set of three coupled first order nonlinear differential
equations:

ẋ = −y,
ẏ = −z,
ż = −x− γz + ϵ sinh(ρy),

(1)

where γ, ϵ, and ρ are are the constant positive parame-
ters. The two later parameters are intrinsic to the light
emitting diodes and will be setting constant in section
of numerical simulations. It should be mentioned that
the new parameter introduced in the original model re-
ported by Volos and colleagues help to facilitate the cir-
cuit realization of the mathematical model with a pair
of emitting diodes connected in anti-parallel. The great
interest devoted to Eq. (1) is justified by its simplicity
in the mathematical model (containing only five terms
of which one is nonlinear), in the electronic circuit as
well as possibility to experience very rich and striking
phenomena. Another interesting aspect of Eq. (1) is
the configuration (diodes connected in anti-parallel) of
light emitting diodes in its electronic circuit which in-
duces the symmetrical features which are necessary for
the occurrence of symmetric solutions in the system.

3 Numerical Investigations
3.1 Route to Chaos
In order to explore the rich dynamical behaviors ex-

hibited by Eq. (1), the bifurcation diagram and cor-
responding Lyapunov spectrum with respect to the pa-
rameter γ is examined. Form this study, it is found that
the system under investigation can develop very rich
and striking bifurcation structures when the considered
control parameter is slowly adjusted. As an example,

Figure 1. Bifurcation diagram showing the peak of x and corre-
sponding graph of largest Lyapunov exponent with respect to param-
eter γ for ϵ = 2.682× 10−4 and ρ = 4.0485.

we show in Fig. 1 the bifurcation diagram showing
the peak of state variable x and corresponding graph
of largest Lyapunov exponent with respect to the con-
trol parameter γ that is increased or (decreased) in tiny
steps in the range 0.35 < γ < 1.5 for ϵ = 2.682×10−4

and ρ = 4.0485.
It can be observed that the bifurcation diagram well

coincides with their corresponding graph of largest
Lyapunov exponent. In Fig. 1(a), two sets of data
superimposed correspond to the increasing (blue) and
decreasing (magenta) value of control parameter, re-
spectively. This method helps to find the regions of
hysterical behavior which is responsible to the mul-
tiple coexistence of attractors in the system. From
Fig. 1, some interesting phenomena such as period-
doubling, reverse period-doubling, symmetry restoring
crisis, bistability, multistability, limit cycles and chaos
are clearly visible. The hysterical phenomenon (re-
sponsible of the coexisting attractors), bistability, and
symmetry restoring crisis observed in the bifurcation
will examined in detail in the following paragraph.
The system in Eq. (1) is symmetric with respect to

the origin. This properties induce the bistability phe-
nomenon shown in Fig. 2 in the (x − y) plane for
ϵ = 2.682× 10−4, ρ = 4.0485 and γ = 0.5.
In Fig. 2, the blue and magenta attractors are ob-

tained, respectively for x(0), y(0), z(0) = (0, 1, 0)
and x(0), y(0), z(0) = (0,−1, 0). The phenomena
of bistability has been observed in many other nonlin-
ear dynamical systems which possess the symmetrical
properties.
For ϵ = 2.682 × 10−4, ρ = 4.0485 and γ = 0.7, Eq.

(1) displays the double-band chaotic attractors follow-
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Figure 2. Bistable chaotic attractors in the (x− y) plane obtained
for ϵ = 2.682× 10−4, ρ = 4.0485 and γ = 0.5. The initial
conditions are indicated in the text.

ing a symmetry recovering crisis. The obtained result
is depicted in Fig. 3 in the (x− y) plane.

Figure 3. Double-band chaotic attractors in (x − y) plane com-
puted for ϵ = 2.682× 10−4, ρ = 4.0485 and γ = 0.7.

In order to illustrate crisis induced intermittency oc-
curring in the system, we provide in Fig. 4 the time
traces of coordinate for ϵ = 2.682× 10−4, ρ = 4.0485
and γ = 0.7, and different values of γ.
It should be stressed that the crisis route to chaos re-

ported in this work have also been found in various
other nonlinear systems [Kengne et al., 2015; Njitacke
et al., 2016].

3.2 Hysteresis Dynamics
When we made an enlargement of the bifurcation di-

agram in the range 0.454 < γ < 0.480, the region
in which Eq. (1) experiences hysteresis dynamics is
clearly observed as shown in Fig. 5.
In Fig. 5, two sets of data corresponding, respectively,

to increasing (blue) and decreasing (magenta) values
of the bifurcation control parameter are superimposed.
This diagram confirms the existence of the hysterical
features in the system described by Eq. (1).

Figure 4. Illustration of symmetry restoring crisis bifurcation for
ϵ = 2.682× 10−4, ρ = 4.0485, (a) γ = 0.5200, (b) γ =
0.5382 and (c) γ = 0.5500. There are two mirror image chaotic
attractors one with x(τ) < 0 and another with x(τ) > 0. The
two attractors merge to form unique attractor with mirror symmetry.

Figure 5. Enlargement of the bifurcation diagram of Fig. 1 in order
to make more visible the region in which Eq. (1) exhibits multiple
coexisting attractors.

With the same values of parameters setting in Fig. 5,
and for γ = 0.462, the simple jerk circuit with a pair
of light emitting diodes displays coexistence of differ-
ent attractors (i.e., a pair of period-3 limit cycles and
a pair of single band chaotic attractors) as shown in
Fig. 6. The pair of single-band chaotic attractors are
obtained with x(0), y(0), z(0) = (±0.1,±0.1,±0.1)
white a pair of period-3 limit cycle are obtained with
x(0), y(0), z(0) = (±1,±1,±1). The coexistence of
four different solutions is further illustrated by plotting
the cross sections of the basin of attraction provided in
Fig. 7 for x(0) = 0, y(0) = 0, and z(0) = 0, respec-
tively.
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Figure 6. Coexistence of four different attractors for ϵ = 2.682×
10−4, ρ = 4.0485, and γ = 0.462. The initial conditions
are setting as x(0), y(0), z(0) = (±0.1,±0.1,±0.1) and
x(0), y(0), z(0) = (±1,±1,±1) for periodic and chaotic
solutions, respectively.

One can see from Fig. 7 the different regions of initial
conditions in which each attractor can be found. The
black regions correspond to initial conditions leading
to a pair of chaotic attractors while the yellow ones are
associated with the initial conditions leading to a pair
of period-3 limit cycles. The coexistence of four dif-
ferent attractors has been reported in other nonlinear
systems with complicated model and at least to equi-
librium points. The system under investigation in this
work is very simpler and possess only one single triv-
ial equilibrium point. This means that the presence of
a large number of equilibrium points is not a neces-
sary condition of occurrence of coexisting attractors.
It is known that the occurrence of multiple attractors
represents an additional form of randomness and sys-
tem which experience this phenomenon can be used
for many applications such as chaos based communica-
tion, image encryption and generation of random num-
bers. However, in many practical situations, this singu-
lar phenomenon is not desirable and requires control.

Figure 7. Cross sections of the basin of attraction for ϵ =
2.682 × 10−4, ρ = 4.0485, and γ = 0.462 for (upper)
z(0) = 0, (middle) y(0) = 0, and (lower) x(0) = 0, respec-
tively.

3.3 Control of Multistability
In this section, we discuss the control of mulitstability

in Eq. (1) by using the method of linear augmentation
[Sharma et al., 2015]. In order to remove multistability
behavior, Eq. (1) is coupled with a linear system as
follows

ẋ = −y,
ẏ = −z,
ż = −x− γz + ϵ sinh(ρy) + αw,
ẇ = −kw − α(z − β),

(2)
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where α is the coupling strength, β is the control pa-
rameter which serves to locate the position of fixed
point and k is the decay parameter of the linear system
w.
The largest Lyapunov exponent of Eq. (3) in terms of

the coupling strength α is presented in Fig. 8.

Figure 8. Largest Lyapunov exponent computed with ϵ =
2.682 × 10−4, ρ = 4.0485, γ = 0.462, β = 0.5, and
k = 0.7.

From Fig. 8, one can see that the dynamics of the
controlled system in Eq. (3) changes from chaotic to
periodic oscillations when the coupling strength is in-
creased. With the same parameters setting in Fig. 6
and for a weak coupling (α = 0.05), Eq. (3) displays
the coexistence of four different attractors as in Eq. (1)
its cross sections of the basin of attraction are similar
to those of Fig. 7. For α = 0.8, the four coexisting
attractors disappear and the system has only a pair of
periodic attractors as its basin displayed in Fig. 9.

Figure 9. Basin of attraction of a pair of periodic attractors com-
puted ϵ = 2.682 × 10−4, ρ = 4.0485, γ = 0.462,
β = 0.5, and k = 0.7, α = 0.8, and z(0) = w(0) = 0.

A further increase in the coupling (α = 1.3), the lin-
ear system kills one periodic attractor and stabilizes the
system to a monostable state.

4 Pspice Based Simulations
One of the advantages of analog simulations is the

possibility to investigate the dynamical behavior of a
circuit by simply varying a single resistor as a con-
trol bifurcation parameter. The analog simulations
serve to validate the numerical investigations and give
some interesting ideas for the real experimental labora-
tory measurements. The hardware implementation of
chaotic models is of great importance for some engi-
neering applications such as chaos based communica-
tion, image encryption and random number generation.
The purpose of this section is to design an appropri-
ate electronic circuit that can be used to investigate the
dynamical behavior of Eq. (1). In this regard, we pro-
vide in Fig. 10 the schematic diagram of the electronic
circuit capable to emulate the dynamics of Eq. (1).

Figure 10. Electronic circuit realization of Eq. (1) with a pair of
light emitting diodes.

By using the Kirchhoff’s laws into the circuit of Fig.
10, we obtain the mathematical model given by follow-
ing three differential equations:

V̇x = − 1
RCVy,

V̇y = − 1
RCVz,

V̇z = − 1
RCVx − 1

RyC
Vz +

2Is
C sinh(

Vy

νVT
,

(3)

where Vx, Vy , and Vz are the output voltages of the op-
erational amplifiers. The system in Eq. (1) is equivalent
to the system in Eq. (??) for the following values of the
electronic circuit components: C = 10 nF , R = 10
kΩ, and Rγ adjustable.
The bistable chaotic attractors depicted in Fig. 11 for
Rγ = 11.5 kΩ.
Similarly, we provided in Fig. 12 the double-band

chaotic attractors for Rγ = 14.28 kΩ.
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Figure 11. Bistable chaotic attractors obtained for C = 10 nF,
R = 10 kΩ, and Rγ = 11.5 kΩ. The initial condition
setting on the capacitors are setting as Vx(0), Vy(0), Vz(0) =
(±0.1,±0.1,±0.1).

Figure 12. Double-band chaotic attractor obtained for Rγ =
14.28 kΩ.

One can see that the Pspice based simulations results
are in good agreement with those obtained numerically.
This serves to justify the ability of the proposed simu-
lator circuit to trace the dynamics of Eq. (1).

5 Conclusion
The dynamics of the simple autonomous like jerk-

system with hyperbolic sine function proposed by Vo-
los and coworkers has been detailed in this contribu-
tion. Some common tools such as time series plots,
phase portraits, bifurcation diagrams and correspond-
ing Lyapunov exponent have been exploited to investi-
gate in detail the dynamical behavior of the system. It
is found that the system experiences some interesting
phenomena including symmetry restoring crisis, bista-
bility and coexisting attractors. Each phenomenon has
been illustrated. In particular for coexisting attractors,
the forward and backward bifurcation technique has
been used to identify the regions of parameters space
showing the occurrence of the hysterical phenomenon
responsible of the coexisting attractors exhibited by the
circuit. This unusual dynamics has been further inves-
tigated by computing the cross sections of the basin of
attraction showing the different initial conditions lead-

ing to each attractor. The phenomenon of coexisting at-
tractors has been controlled in the system using the lin-
ear augmentation technique. The obtained results show
that the control method is able to destroy the coexisting
attractors and induces the system to a desired trajec-
tory. Furthermore an electronic circuit simulator has
been designed and simulated in order to produce some
Pspice simulations for the verification of the numerical
results.
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