
ENOC-2008, Saint Petersburg, Russia, June, 30–July, 4 2008 

TARGETED ENERGY TRANSFER IN A SYSTEM WITH SOFT 
NONLINEARITY 

 
Oleg V. Gendelman  

Faculty of Mechanical Engineering 
Technion – Israel Institute of Technology 

Technion City, Haifa, 32000, Israel 
E-mail: ovgend@tx.technion.ac.il 

 

 

Abstract  
Targeted energy transfer (TET) in a 

2DOF system consisting of primary linear 
oscillator and nonlinear energy sink (NES) 
with non – polynomial potential is 
investigated. Use of non – polynomial and 
even non – analytic potential functions is 
motivated by needs of practical design. It 
is demonstrated that the "complexification 
– averaging" technique of analysis 
developed before can be successfully 
extended for these cases with proper 
modifications.  
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1 Description of the model and 
numeric demonstration 

Targeted energy transfer, i.e. almost 
irreversible passive transfer of mechanical 
energy from linear substructure to 
essentially nonlinear attachment (nonlinear 
energy sink, NES) has attracted a lot of 
attention of researches in few last years 
[Gendelman, 2001, Gendelman, 2004, Lee 
et al, 2006, Panagopulos et al, 2007, 
Gourdon and Lamarque, 2006]. In majority 
of these models, stiff nonlinear 
attachments (commonly, purely cubic 
spring) were used. In many applications – 
especially those where geometric 
nonlinearity is involved – the nonlinear 

springs are soft. Demonstration and 
investigation of the effect of the targeted 
energy transfer in a system with soft 
essentially nonlinear attachment is the goal 
of this work. 

For the sake of modelling, the potential 
of the attachment is chosen in the form 

2( ) ln(1 )V z k zε= + , providing linear limit 
with stiffness coefficient 2εk for small 
deformations z and softening while z 
grows. Primary system is chosen to consist 
of linear oscillator with unit frequency and 
mass, without damping. The nonlinear 
attachment is adopted to have small mass 
ε<<1 and linear damping with coefficient 
ελ. Equations describing the system 
dynamics are  
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where y1 and y2 are the displacements of 
the primary oscillator and the attachment 
respectively. The phenomenon of the 
targeted energy transfer may be 
demonstrated numerically if System (1) is 
modelled with initial 
conditions:

1 1 2 2(0) 0, (0) , (0) 0, (0) 0y y A y y= = = =  
 In order to demonstrate the targeted 
transfer, we plot the relative instantaneous 
energy /( )att primary attR E E E= +  stored in 



the attachment with respect to total energy 
of the system, for two different values of 
initial velocity A and parameters of the 
system ε=0.05, k=2, λ=0.2 (Figures 1 and 
2): 
 

 
Figure 1. Relative instantaneous energy in the 

attachment, A=1.3 
 

 
 

Figure 2. Relative instantaneous energy in the 
attachment, A=0.8 

 
It is clear that for sufficient initial 

excitation the system exhibits vigorous 
targeted transfer of energy to the light 
attachment (for t~30 about 90% of the total 
energy is concentrated at the attachment, 
whereas the linear characteristic time of 
the system is 1/ελ=100). The mechanism 
of the energy transfer is resonance capture, 
which occurs due to soft nonlinearity. At 
small deformations, the linear frequency of 
the attachment is 0 2 / 2kω ε ε= = . Due 
to softening, when the deformations are 
large enough, the attachment can achieve 
1:1 resonance with primary oscillator in 

the vicinity of unit frequency. Then, due to 
damping, the system is taken out from the 
resonance and energy remains at the 
attachment.  

 
2 Averaging procedure – peculiarities 
and verification 
 

Analytic description of the process 
of targeted transfer has been performed by 
applying combined method of 
complexification and averaging with 
multiple – scale analysis [Gendelman, 
2004]. This method works directly only for 
polynomial – type nonlinearities, which is 
not the case in the problem under 
consideration. For equations (1), one may 
be tempted to use similar method, by 
presenting the nonlinear potential of the 
attachment as Taylor series with respect to 
y1-y2 and keeping few first terms. Such 
approach is not valid if one is interested in 
the regime where displacements can be 
comparatively large (of course, it is the 
case for the problem of the targeted 
transfer) since the Taylor series will 
converge only for 1 2 1y y− < . In order to 
circumvent this obstacle, Fourier series 
expansion with respect to fast time scale is 
used. Namely, the following change of 
variables is performed: 
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where τ relates to the slow time scale of 
the problem. Anzats (2) is justified due to 
conditions of 1:1 resonance. The nonlinear 
term is presented as: 
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The asterisk denotes a complex 
conjugation. 

Standard averaging procedure yields 
the following slow – flow equations: 
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Validity of the averaging procedure for 
description of the targeted transfer is 
illustrated at Fig. 3 by direct comparison 
between simulated flows of systems (1) 
and (4) with appropriate corresponding 
initial conditions, computed with the help 
of anzats (2). We compare the values 

2 2
1 2 1 2( ( ) ( )) ( ( ) ( ))Z y t y t y t y t= − + −  

(solid line) and 2averageZ ϕ= (dotted line). 
 

 
Figure 3. Comparison between initial flow 
(solid line) and averaged flow (dotted line) 

 
The averaged flow, as expected, does 

not reflect the fast oscillations of the 
transient response but clearly predicts the 
characteristic shape of the response curve, 
at least at important initial stages of the 
process (time scale of order O(1/ε)). 
Therefore, despite non-polynomial 
nonlinear function, the approach based on 
Fourier series expansion (which may be 
treated as enhanced harmonic balance with 
respect to the fast time scale) yields rather 
reliable results. System (4) is much easier 
for analysis than system (1)  - it is possible 
to prove that the averaging here reduces a 

dimension of effective state space of the 
system by one – but still is not solvable 
analytically. Asymptotic analysis is 
possible based on small parameter ε.   

 
3 Asymptotic analysis 
Asymptotic analysis of system (4) has two 
main goals. Analysis of initial stage of the 
transfer process (time scale O(1)) is 
necessary to establish the critical 
amplitude of initial impact when the 
nonlinear attachment will be excited. 
Analysis of later stages of the process 
(time scale O(1/ε)) establishes the 
conditions of efficient dissipation of 
energy in the system.  
 
3.1 O(1) time scale 
For time scale O(1) system (4) is reduced 
to the form 
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where A is the initial velocity of the 
primary mass (in other terms, we simulate 
the solutions of system (1) with initial 
conditions 

1 1 2 2(0) 0, (0) , (0) 0, (0) 0y y A y y= = = = . It 
is easy to demonstrate that equation (5) can 
have one or three fixed points, depending 
on values of k, A and λ. If the fixed point 
is single it is stable node; pair of saddle 
and additional node may appear depending 
on parameters of the system. Efficient 
energy transfer to the attachment is 
provided if the only fixed point is "upper" 
node. Simple (but only numeric, due to 
complicated shape of function G) 
estimation yields the minimal value for 
initial velocity Acrit = 1.1 for values of the 
parameters λ=0.2 and k=2. It is rather close 
to the results of numeric observations. 
 
3.2 O(1/ε) time scale 
At time scale O(1/ε) system (3) is reduced 
to 
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Despite apparent complexity, system (6) 
is completely integrable for any function 
G. It is possible to prove that for any value 
of k>0.5 (which naturally corresponds to 
possibility of 1:1 resonance capture in the 
system under consideration) there exists 
interval of values for the damping 
coefficient max(0, )λ λ∈  for which the slow 
flow described by (6) will exhibit 
breakdown, leading to efficient dissipation 
of energy. So, against an intuition, in order 
to get efficient dissipation one should keep 
the dissipation coefficient small enough.    

 
4 Conclusions 
• Targeted energy transfer may be 
achieved in the systems with soft 
nonlinearity. 
• Transient responses of these systems 
with non-polynomial nonlinearities may be 
successfully treated with the help of 
Fourier expansion with respect to fast time 
scale and subsequent averaging 
• Asymptotic analysis based on small 
parameter related to the mass ratio yields 
reliable analytic description of the transfer 

process and allows optimization of the 
parameter values. 
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