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Abstract
The onset of synchronization between two chaotic cir-

cuits has been deeply investigated in recent literature.
However, the effects on the synchronous state of para-
meter mismatches, due to uncertainty sources, between
coupled systems have not been sufficiently studied.
In this work we study numerically and experimentally

the robustness of synchronization in presence of para-
meter mismatches in the case of hyperchaotic behav-
ior. For robustness of synchronization we mean the ca-
pability shown by the coupling scheme of maintaining
a synchronous motion even if the two circuits are not
identical, due to uncertainties on circuit parameters.
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1 Introduction
Complete synchronization between two chaotic cir-

cuits can be reached when the systems are identical
[Pecora & Carroll, 1990]. In presence of parame-
ter mismatches between the systems, due to uncer-
tainty sources, complete synchronization can be ob-
tained only by using an open-loop–closed-loop based
approach in which more than one signal is involved
in the synchronization scheme [Grosuet al., 2008].
Weaker forms of synchronization, however, can be ob-
served in presence of parameter mismatches by using
relatively simple coupling scheme based on the nega-
tive feedback of a unique scalar signal.
In this work we study numerically and experimentally

the robustness of synchronization in presence of para-
meter mismatches between the coupled circuits in the
case of hyperchaotic behavior. The term robustness
of synchronization indicates the capability shown by
the coupling scheme of maintaining the synchroniza-
tion even if the two circuits are not identical, due to
uncertainties on circuit parameters.
A master-slave scheme based on negative feedback is

considered for achieving the synchronization and the

strategy to design the slave system as an observer of the
master is given following the procedure described in
[Arenaet al., 2006]. With this approach, based on the
Master Stability Function [Pecora & Carroll, 1998], the
two circuits are coupled through a unique scalar signal.
Experimental results obtained from two hyperchaotic
circuits will be presented in order to show that syn-
chronization widely occurs in the range of electronic
component tolerances.

2 MSF-based synchronization of two hyperchaotic
circuits

In this paper, a scheme, based on negative feedback
[Kapitaniak, 1994], in which the slave system is de-
signed as an observer of the master system, is proposed.
Therefore, an error signal, built comparing the same
linear combination of master and slave state variables
(which are assumed measurable), is fed back into the
slave system.
Hence, assuming that the master equations are:

Ẋm = f(Xm), (1)

the slave equations will be:

Ẋs = f(Xs) + Ke, (2)

whereK is the gains vector,e = CXm − CXs is
the (scalar) error signal, andC is a vector defining the
linear combination of the state variables.
In order to set values ofK andC suitable for the onset

of synchronization, we applied an approach based on
the Master Stability Function (MSF).
The MSF was introduced in [Pecora & Carroll, 1998]

and is a simple and efficient tool for the evaluation
of the conditions under whichN identical oscillators



(coupled in an arbitrary network configuration admit-
ting an invariant synchronization manifold) can be syn-
chronized. The dynamics of each node can be modelled
as

ẋ
i = F (xi) − σ

∑

j

GijH(xj) (3)

where i = 1, ..., N , ẋ
i = F (xi) represents the dy-

namics of each node,σ is the coupling strength,H :
R

N → R
N the coupling function andG = [Gij ] is a

zero-row sum matrix modelling the coupling network.
The maximum conditional Lyapunov exponentΛmax

of the generic variational equation

ζ̇ = [DF − (α + iβ)DH]ζ (4)

can be calculated as a function ofα and β. In Eq.
(4) DF andDH represent the Jacobian ofF (xi) and
H(xj) computed around the synchronous state. The
functionΛmax = Λmax(α + iβ), which does not de-
pend on the specific topology of the coupling network,
represents the Master Stability Function (MSF). The
stability of the synchronization manifold in a given net-
work can be then evaluated by computing the eigenval-
uesγh (with h = 2, . . . , N ) of the matrixG and study-
ing the sign ofΛmax at the pointsα + iβ = σγh. If
all associated eigenmodes withh = 2, . . . , N are sta-
ble, then the synchronous state is stable at the given
coupling strength.
In the coupling scheme considered in this paper, the

coupling matrix isG =

(

0 0
1 −1

)

, whose eigenvalues,

i.e. γ1 = 0 andγ2 = −1, are real. In this case the MSF
can be computed as function ofα only.
The choice of vectorsC andK can be then performed

on the basis of the sign of the corresponding MSF.

3 Bifurcation analysis of the designed hyper-
chaotic circuit

The robustness of the MSF approach with respect to
parameter mismatches will be evaluated considering
the case study of two hyperchaotic circuits. The consid-
ered four-dimensional dynamical system is described
by the following dimensionless equations [Wanget al.,
2009]:

ẋ = a(y − x) + yz

ẏ = cx − xz − y − 1

2
w

ż = xy − 3z

ẇ = 1

2
xz − bw

(5)

These equations, each characterized by a cross-
product term, represent an hyperchaotic extension of
the Lorenz system. Choosinga = 40, b = −1.5, and
c = 88 the system exhibit an hyperchaotic behavior.
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Figure 1. Experimental bifurcation diagram for the proposedcir-

cuit with respect to parameterc. The other parameters are fixed as

indicated in the text.

An electronic circuit reproducing the dynamics of
Eqs. (5) has been designed and implemented follow-
ing the approach in [Manganaroet al., 1999]. The sen-
sitivity of the circuit with respect to parameterc has
been investigated and the corresponding experimental
bifurcation diagram is reported in Figure 1. All the
data collected in the experiments have been acquired
by using a data acquisition board (National Instruments
USB-6009) with sampling frequencyfs = 40kHz for
T = 2s (i.e. 80000 samples for each time series).
Changing the parameterc the circuit shows a wide

range of dynamical behaviors according to the numeri-
cal analysis carried out by [Wanget al., 2009].

4 Robustness of the synchronization of two hyper-
chaotic systems

Two circuits reproducing the dynamics of the Eqs. (5)
have been coupled in a negative feedback scheme ob-
taining a synchronous behavior by choosing the cou-
pling gains on the basis of a Master Stability Function
analysis.
ChoosingC = C̄ = [1 1 1 1 ], and K = K̄ =

[k1 k2 k3 k4 ] = [ 1 1 0 0 ] means that the master and
slave systems are coupled through the sum of their
state variables, defined byC, and the error signale =
xm + ym + zm + wm − xs − ys − zs −ws is fed back
only to the first and the second dynamical equations of
the slave, as defined byK. Thus, the equations of the
master-slave system will read as follows:

˙xm = a(ym − xm) + ymzm

˙ym = cxm − xmzm − ym − 1

2
wm

˙zm = xmym − 3zm

ẇm = 1

2
xmzm − bwmẋs = a(ys − xs) + yszs + k1e

ẏs = cxs − xszs − ys −
1

2
ws + k2e

żs = xsys − 3zs

ẇs = 1

2
xszs − bws

(6)
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Figure 2. Master stability function for the system in Eqs. (5) in the

hyperchaotic region (i.e.,a = 40, b = −1.5, andc = 88, with

K = K̄ andC = C̄ .

The MSF computed for the hyperchaotic circuit con-
sidered in this paper withC = C̄ andK = K̄ is re-
ported in Fig. 2, and has negative values forα < αc ≈
−6.
In our experimental setup, we set the coupling coeffi-

cientσ = σ̄ = 8 in order to havēσγ2 < αc ensuring
the stability of the synchronous manifold.
However, dealing with real circuital components, the

two coupled circuits cannot be exactly identical, due
to tolerances in electrical components. Our aim is to
measure the robustness of synchronization in presence
of parametric uncertainty. In this case, in fact, complete
synchronization can be achieved only transmitting to
the slave system three different signals [Grosuet al.,
2008]. In any case, using the proposed scheme based
on a reduced order observer, general synchronization
can be reached.
Being δa, δb, andδc, the uncertainties on parameters

a, b, andc, the uncertain parameters of the slave system
can be written as follows:̄a = a(1+δa), b̄ = b(1+δb)
andc̄ = c(1+δc), wherea = 40, b = −1.5 andc = 88
are the nominal values of the parameters. In this case,
the equations of the slave system become:

ẋs = (a + aδa)(ys − xs) + yszs + k1e

ẏs = (c + cδc)xs − xszs − ys −
1

2
ws + k2e

żs = xsys − 3zs

ẇs = 1

2
xszs − (b + bδb)ws

(7)

with a = 40, b = −1.5, andc = 88.
It can be numerically observed that mismatches on

parameterc lead to smaller effects in the error index
compared to the effects introduced by mismatches ona

andb. Therefore, we can assume that the uncertainties
on a andb should be lower than uncertainty onc, i.e.
R = 10δa = 10δb = δc.
The considered uncertainties identify an ellipsoid in

the parameter space. Inside the ellipsoid, whose axes
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Figure 3. Percentage of parameter sets chosen inside the uncer-

tainty ellipsoid for which the error index is lower than a threshold.
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Figure 4. Mean error〈δ〉 vs. cs.

are defined by the uncertainties on the three parame-
ters, we numerically verified that the system behaves
hyperchaotically.
Let us define a synchronization error as
〈δ〉 = 1

4
(
√

〈|xm − xs|2〉 +
√

〈|ym − ys|2〉 +
√

〈|zm − zs|2〉 +
√

〈|zm − zs|2〉). A Monte-Carlo
like approach allows to evaluate the error index for
N = 10000 parameter sets chosen inside the uncer-
tainty range. Fixing an error thresholdδ̄, the number of
pointsN+ corresponding to error indexes lower thanδ̄

is taken into account. In Fig. 3 the fractionN+

N
of para-

meter sets for which〈δ〉 < δ̄ is reported for increasing
values of the uncertainty and for different values ofδ̄.
Given a value for the uncertaintyR, Fig. 3 allows to
derive the maximum value of the synchronization error
corresponding to that uncertainty.
The results observed through numerical simulations

have been experimentally validated. Our experiments
were restricted to the case of one parameter mis-
matches. In particular, the parametercs of the slave
system has been varied in the range65 < c < 110,
keeping constantcm = 88 in the master (i.e., ensuring



that the master is in the hyperchaotic regime). In Fig.
4 the error index〈δ〉 is plotted for each value ofcs. It
should be noticed that the range experimentally investi-
gated is larger than that numerically examined. In fact,
there are values ofcs (cs < 75) inducing a periodic be-
havior in the slave. For such values the synchronization
error is greater. When the slave is in the hyperchaotic
regime, the synchronization error is in the range pre-
dicted by the numerical analysis.
These results show that a suitable level of synchro-

nization can be reached also in presence of parameter
mismatches.

5 Conclusions
In this paper the robustness of synchronization in pres-

ence of parametric uncertainties is investigated, both
numerically and experimentally. The experiment was
performed through the electrical analogous of a re-
cently introduced Lorenz-like system able to show hy-
perchaotic behavior. Dealing with real circuital com-
ponents, the two coupled circuits cannot be identical,
due to tolerances in electrical components. However,
the results presented in this work allow to remark that
the MSF approach is a robust observer design tool for
critical systems like the hyperchaotic ones.
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