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Abstract
Quantum systems that comprising atoms coupled to

optical cavities have been normally used for quantum
information processing. Due to improvement of the
experimental control under such systems, new archi-
tectures involving one or two atoms and cavities with
two modes have been proposed. The entanglement is
here the fundamental quantum feature which plays an
important role in quantum processing. In this work,
we investigated dynamical entanglement of quantum
states transfer of the coupled atoms with micro-toroidal
cavities. Each cavity supports two counter-propagating
whispering-gallery modes coupled simultaneously an
atom through their evanescent fields. We show that, it
is possible to transfer with high fidelity a superposition
state of one atom which is coupled to a micro-toroidal
cavity to the another atom which is coupled to a second
micro-toroidal cavity. Normally this kind of propagat-
ing medium has high quality factor however they can
have some small deformation that can also introduce
coupling between the gallery modes and in that situa-
tion generating entanglement between them. We also
observed that, is possible transfer this entangled states
between the cavities. In addition, the influence of the
coupling between the modes in dynamics of entangle-
ment between the two atoms is analysed.
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1 Introduction
The quantum networks usually consist of distant

nodes connected by quantum communication channels.
Each nodes can process, store and distribute the quan-
tum information under the network via reversible and
irreversible processes channels [Boozer, Boca, Kim-
ble, 2007]. Numerous proposals have been realized

- both experimental and theoretical - for implementa-
tion of the atoms coupled to optical cavities to become
the nodes that make up a quantum network [Raimond,
Brune, Haroche, 2001]. In this case, coupled opti-
cal cavities can be implemented as quantum channels
[Cirac, Zoller, Kimble, 2009]. Different architectures
of cavities have been developed (micro-fabricated) due
to need for ultrahigh factors (Q) and scalability to
large number of devices [Kimble, 2008]. For this pro-
pose, micro-toroidal or micro-spherical resonators have
present a technical feature to achieve efficient optical
communications, such as, small-mode-volume, ultra-
high quality factors and strong coupling between an
atomic system and the cavity electromagnetic mode
[Spillane, Kippenberg, Painter, Vahala, 2003]. There-
fore it would be interesting to extend their research to
consider the dynamics of quantum state transfer in a
system formed by two-level atoms coupled to a micro-
toroidal cavities.
Here we investigated the dynamics of the two coupled

micro-toroidal cavities via the evanescent field of two
intracavity modes and where each of them is coupled
to a single two-level atom. Our main result consist in
transfer a superposition state of one atom which is cou-
pled to a cavity for the other atom which is coupled
to another cavity with high fidelity, taking into account
mechanism of the system losses. The possibility of the
coupled between the intracavity modes (generated for
imperfection in cavity) for the dynamical entanglement
between the atoms is also studied.

2 Theory
Our system consist of two coupled micro-toroids in-

teracting with two-level atoms shown in Fig. 1. The
micro-toroids and atoms are depicted by label i = 1, 2.
The two degenerate counter-propagating whispering-
gallery modes (WGM’s) of frequency ωCi , with an-
nihilation (creation) operators âi (â

†
i ) and b̂i (b̂

†
i ) of

each one of the cavities, are coupled simultaneously



to a single two-level atom with coupling constant gi
and transition frequency ωieg . We assume that the in-
teraction of the atoms and toroid with the surrounding
environment is described by spontaneous emission rate
of the atoms (γA) and cavity decay rate (κ). We also
consider the intermode backscattering between the two
WGM’s (strength constant Ji) induced by small defor-
mation in the toroid [Spillane, Kippenberg, Painter, Va-
hala, 2003].

Figure 1. Scheme experimental of the two atoms- two micro-
toroidal cavity system. Each cavity consists of two modes coupled to
a two-level atom.

According to the above scheme, the Hamiltonian of
the atom-microtoroid system is given by

H = HA1C1 +HA1C2 +HC1C2 (1)

where

HA1C1 = ~ωeg1 σ
+
1 σ
−
1 + ~ωC1(â

†
1â1 + b̂†1b̂1) +

~J1(â†1b̂1 + b̂†1â1) + ~(g∗1 â
†
1σ
−
1 + g1â1σ

†
1) +

~(g1b̂†1σ
−
1 + g∗1 b̂1σ

†
1), (2a)

HA2C2 = ~ωeg2 σ
+
2 σ
−
2 + ~ωC2(â

†
2â2 + b̂†2b̂2) +

~J2(â†2b̂2 + b̂†2â2) + ~(g∗2 â
†
2σ
−
2 + g2â2σ

†
2) +

~(g2b̂†2σ
−
2 + g∗2 b̂2σ

†
2), (2b)

HC1C2 = ~λ(e−iφâ†1b̂2 + eiφb̂†2â1 + e−iφb̂†1â2 +

eiφâ†2b̂1) (2c)

with ~ωegi denotes the energy required of separation be-
tween of the atom i (i = 1, 2) for excited and ground
states by |e〉i and |g〉i, σ+

i = |e〉i〈g| and σ−i = |g〉i〈e|
are the raising and lowering operators of the atom i, λ
is the coupling constant between the two micro-toroid
and determine the speed of the energy transfer between
them [Zhou, Zheng-Yuan Xue, 2014]. The phase φ
take into account the propagation distance between the
micro-toroids. For neglect effects of the retardation at
time of flight of the light, a short distance limit between
the toroids should be imposed.
In the Eqs.(2) HA1C1 and HA2C2 describe the first

and second atom-toroid interacting systems, respec-
tively, and HC1C2 describes the coupling between the
toroids.

To get information about the evolution of the system
state considering the interaction of system with the sur-
rounding environment, which in practice introduce loss
mechanisms, we need help of the master equation (that
for the case where the reservoir is in the temperature
T = 0 and weak coupling) is written as [Carmichael,
1993]

d

dt
ρ(t) = − i

~
[H, ρ(t)] +

2∑
i=1

κi
2
(2âiρ(t)â

†
i − â

†
i âiρ(t)− ρ(t)â

†
i âi) +

2∑
i=1

κi
2
(2b̂iρ(t)b̂

†
i − b̂

†
i b̂iρ(t)− ρ(t)b̂

†
i b̂i) +

2∑
i=1

γA
2
(2σ

(i)
− ρ(t)σ

(i)
+ − σ

(i)
+ σ

(i)
− ρ(t)−

ρ(t)σ
(i)
+ σ

(i)
− ) (3)

where ρ(t) is the density operator of the atom-
microtoroid systems and H is given by Eq. (1). Hav-
ing in mind the quantum state processing our main ob-
jective here is the quantum state transfering between
the two atoms, following the quantum transmission be-
tween two qubit as defined by [Cirac, Zoller, Kimble,
2009], i.e.,

(ca|1〉1 + cb|0〉1)⊗ |0〉2 ⇒ |0〉1 ⊗ (ca|1〉2 + cb|0〉2)

where ca and cb are complex numbers. We can un-
derstanding the quantum state transmission process
matching tomographically the evolved state of the sys-
tem or subsystem on the initial state, such as, a sub-
system having the first qubit in a superposition state
(in Fock bases) and the second in vacuum state, and
at certain elapsed time t the first qubit of subsystem
is projected on the vacuum state and second in a su-
perposition state, performing a perfect and complete
transmission. In our case, preparing the initial state
|ψi〉 = (cos θ|g〉1+eiα sin θ|e〉1)|g〉2|00〉c1|00〉c2 with
|00〉c1 = |0〉a1 ⊗ |0〉b1 and |00〉c2 = |0〉a2 ⊗ |0〉b2 the
goal is to obtain the final state |ψf 〉 = |g〉1(cos θ|g〉2 +
eiα

′

sin θ|e〉2)|00〉c1|00〉c2. Following the time evolu-
tion of the quantum state it is possible find the exact
time when the state of the atom 1 is completely trans-
ferred to the atom 2. We have done this using the Fi-
delity as defined by [Nielsen, Chuang, 2000]

F = 〈ψf |ρ̂A1A2(t)|ψf 〉 (4)

where ρ̂A1A2(t) is the reduced density matrix of the
two atoms, which takes into account all mechanisms of
losses considered. In order, to observe the dynamics of
state transfer and degree of entanglement between the



atoms, we also have used the Negativity, as proposed
by [Vidal, Werner ,2002]

N =
∑
i

|µ−i | (5)

where µ− are the negative eigenvalues of ρA1A2(t).
WhenN = 0 indicates that the states of each atoms are
separable and for N = 1 the two atoms are in a max-
imum entanglement state. This measure is important
to certify that at instant of time of complete quantum
state transfer, Fidelity will be equal to one, the Nega-
tivity must be zero (indicating that the initial product
state reach after transference a final product state, hav-
ing at this time a maximum Fidelity and Negativity null
(product state or separable state).

3 Quantum state transfer
In this section we present results about the dynamics

of the quantum state transfer in a system of two coupled
resonators including the presence of losses. Firstly, we
examine the implementation of a swap gate between
the two atoms (analogous the swap gate two-qubit) ob-
serving time evolution of the Fidelity. Then, we extend
our investigation for the case of a transference of super-
position state from atom 1 to atom 2, when the modes
of the resonators are in vacuum state. The influence of
the dissipation effects and the dynamics entanglement
between the two atoms are also considered. Besides,
we also consider in our scheme the transference of en-
tangled state.

3.1 Swap gate
Quantum computation require the successful imple-

mentation of the quantum gates. In this way, we de-
scribe as a swap gate can be applied in our scheme,
making use of the fidelity. For this purpose, we will
use in the eq.(4) the initial state of the system, not the
final state like there. The new equation is now repre-
sented by

Fi = 〈ψi|ρ̂A1A2(t)|ψi〉. (6)

We can observe in Fig. 2 that the function Fi at instant
of time τn = 2n π√

2
(n = 0, 1, 2, ...) reaches the value

unitary for any value of θ. This is interesting because
the system periodically returns to the initial state (re-
versible processes), behaving as a swap gate between
the two atoms, with repetition period of 2π/

√
2. In this

case, we assume that there is no coupling of the system
with the environment.

3.2 Lossless quantum state transfer
Now, we study the possibility of the transferring of

quantum state for two coupled micro-toroidal cavities

Figure 2. Time evolution of the fidelity related to state |ψi〉 as a
function of normalize time (τ = gt) and θ. The results were ob-
tained for ω/g = 20 and α = 0.

via evanescent field, where each of them is coupled to
a single two-level atom. For sake of simplify, we im-
posed two conditions on that system: (i) λ � g, J
(strong coupling regime) and (ii) the resonant case,
i.e., the frequency of the two WGM’s is equal the fre-
quency of the atomic transition (ωCi = ωieg = ω). For
this case, considering the initial state ψi and we ob-
tain the following solution for state of the system in the
Schödinger picture

|ψ(t)〉 = [cos θe
iω
g τ |g〉1|g〉2 −

eiα sin2(
τ√
2
) sin θ|g〉1|g〉2 + eiα[

cos2(
τ√
2
) sin θ|e〉1|g〉2]|00〉c1|00〉c2] +

i√
2
[

eiα sin(
√
2τ) sin θ|g〉1|g〉2|00〉c1|01〉c2] (7)

In the instant of time τn = (2n+1)π√
2

(n = 0, 1, 2...) the
state of the system is given by:

|ψ̃1〉 = |g〉1[cos θ|g〉2 + e−iα
′

sin θ|e〉2]|00〉c1|00〉c2
(8)

where α
′
= α− (2n+1)π√

2
ω
g .

Under the condition ω/g = 2l (l integer), the state of
the atom 2 at the instant of time τn is exactly same atom
1 superposition state, i.e., the atomic state was com-
pletely transferred from the atom 1 to the atom 2. To
observe the temporal evolution of system in the process
of transferring this state, without dissipation mecha-
nism, we using eq.(3) from which we have obtained the
fidelity as in function of the parameters θ and τ , that is
shown in Fig. 3. As expected, the state is completely
transferred at τ = π/

√
2 (F = 1), for any value of an-

gle θ. We also observe that, the Fidelity present some
oscillations before reaching the value unit, which de-
pend of the ratio ω/g.



Figure 3. Time evolution of the fidelity related to state |ψf 〉 as
a function of normalize time (τ = gt) and θ. The results were
obtained for ω/g = 20 and α = 0.

3.3 Transfer in the presence of losses
From an experimental point of view to transfer quan-

tum state efficiently under realistic conditions, one
must take into account the presence losses, e.g., spon-
taneous emission of the atoms (γA) and decays of the
two resonators (κ1 and κ2). In this case, we using the
eq. (3) for estimate the performance of our scheme in
quantum state transfer. In the Fig. 4 (Top) is plot-
ted the Fidelity (first maximum) as function of nor-
malize time τ for fixed values of the angle θ = π/4
and different process and values of losses. The solid
line (color black) represents the case when the sys-
tem is coupled weakly with the surround environment,
κ = γ = 2 × 10−3g, indicating that the transmission
is reliable, in this regime. The dotted line (color red)
represent the case of intermediate coupling with envi-
ronment, when κ = 2 × 10−1g and γ = 1 × 10−2g,
reaching a maximum transmission of F = 0.957 indi-
cating still, an efficient transmission. The dashed line
illustrate the case of dissipation more intense when the
system is coupled strongly with environment, as we can
seen with κ = γ = g (color blue), the transmission Fi-
delity reach at F = 0.652, indicating that the quantum
state transfer is inefficient. In the Fig. 4 (Botton) is
plotted the Fidelity (first maximum) only for the cen-
tral peak to show that the Fidelity is exactly one in the
neighborhood of τ = 2.20, indicating maximum trans-
ference of the initial state.
In order to confirm the complete transference of the

superposition state, we observe the dynamics of entan-
glement between the atoms using, as witness of per-
fect transference, the negativity for initial state |ψ〉i.
As shown in the Fig. 5, when the negativity is zero
(N = 0 at time τ = π/

√
2), corresponding to the situ-

ation where the atoms are in a separate state occur the
maximum quantum state transfer (see Fig. 3), mean-
ing that we have complete transference of the atomic
state of the atom 1 to the atom 2. At this instant of time
the state |ψf 〉 is a separate state, in accordance with a
negativity = 0, as expected. This allows us use projec-

Figure 4. (Upper) Time evolution of transmission fidelity related to
state |ψf 〉 as a function of normalize time (τ = gt) for θ = π/4.
The solid line (color black) is for κ = γ = 2 × 10−3g, doted
line (color red) for κ = 2 × 10−1g and γ = 1 × 10−2g and
dashed line (color blue) for κ = γ = g The results present were
obtained with ω/g = 20 and α = 0. (Lower) Zoom for range
2.05 < τ < 2.35 with same parameters above.

tive measurement over one atomic state without disturb
the state of the other atom, indicating that this system
could be used for processing quantum information.

Figure 5. Time evolution of the negativity as a function of normal-
ize time (τ = gt) when the pair of atoms is initially prepared in
state |ψi〉 for θ = π/4 . The result present were obtained with
ω/g = 20 and α = 0.

Besides the possibility of transfer an atomic super-
postion state we note that our system support also the
transference of a quantum entangled state. In such a
case, the atom 1 is initially prepared in a superposi-



tion state and the modes of resonator 1 is in maximal-
ity entangled state and other parts of the system are in
their fundamental states, e.g., |ψ(2)

i 〉 = (cos θ|g〉1 +

eiα
′

sin θ|e〉1)|g〉2 1√
2
(|10〉c1+ |01〉c1)|00〉c2. The goal

here is transferring the superposition state from atom
1 to atom 2 and the entangled state from resonator 1
to resonator 2. Then, again, we observed the evolu-
tion of the fidelity as function of normalize time (τ )
for θ = π/4. This result is shown in the Fig. 6.
From this figure we can see that, at time τn = (2n+1)π√

6

(n = 0, 1, 2...) the quantum entangled state is com-
pletely transferred, showing more efficiency (decrease
in transfer time) for quantum information processing.
This result is equivalent to the transfer of the entangled
state of two qubits [Nohama, Roversi, 2008], only that
in the present case instead of the vibrational-electronic
state we are performing the transmission of the entan-
gled state between the modes of the resonator 1 to the
resonator 2.

Figure 6. Evolution of the fidelity as a function of normalize
time (τ = gt) for θ = π/4, related to the state |ψf 〉 =

|g〉1(cos θ|g〉2 + eiα
′

sin θ|e〉2)|00〉c1 1√
2
(|10〉c2 +

|01〉c2). The results present were obtained with ω/g = 20 and
α = 0.

4 Conclusion
We explored a system formed by two microtoroidal

cavities coupled by evanescent field, where each cav-
ity interacts with a single two-level atom. It was ob-
served that the set of quantum state (separate and en-
tangled) is completely transferred from atom 1 coupled
with the resonator 1 to atom 2 coupled with resonator
2. Even under the influence of interaction between
the system and environment (reservoir at temperature
T = 0) the transference could be done with high effi-
ciency (F = 0.957). The system of two coupled mi-
crotoroidal cavities shown that the period of separable
state (negativity null) during the transference is rela-
tively large allowing quantum information processing
without disturb the states of others subsystems involved
in the process. it is also important to say that the trans-

ference of the quantum state had shown more efficient
when the initial state is an entangled state.
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