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Abstract
This work is directed toward stabilizing a PVTOL by

two rotors with restricted spatial mobility. The prob-
lem of controlling the system is solved using a new
method proposed by Astolfi and Ortega, named Immer-
sion and Invariance stabilization. The method consists
of a controller which is strengthened by immersion in a
system with better performance characteristics and its
invariance ensures that will converge to a point of sta-
bility. This is validated by numerical software simula-
tion and implemented on a virtual reality environment
which was designed in CAD software.

Key words
Stabilizing, Controlling, Inmersion and Invariance,

PVTOL

1 Introduction
In recent years several studies have been generated

concerning to the development of unmanned aerial
vehicles more efficient, with better performance and
higher yields, due to the need of aerospace vehicles
to have small size and wide range of applications
ranging from vehicular traffic monitoring, inspection
of hazardous areas, border surveillance, weather mea-
surement, search and rescue and disaster monitoring
applications such as military in war zones where it is
necessary to survey the area without risking the lives of
pilots. One of the main objectives for researchers now
is to achieve automated flight dynamics of such aircraft
so as to be stable and perform in the neighborhood of
a desired trajectory.
The problem addressed in this paper is to stabilize
the decoupling between the longitudinal and lateral
dynamics the study is then made on a dynamic PVTOL
with cartesian restricted conditions, the system is
described as a system with two propellers arranged
at a distance above the longitudinal plane (x) and
translational dynamics restricted.
For this system we obtain a mathematical model

describing the dynamics of a rod actuated by two
rotors for which we design a control algorithm that
stabilizes the system, such algorithms are validated
through software simulations and implementation in a
Virtual reality environment. The paper is organized as
follows, section 1 is a brief introduction and discusses
the background, section 2 gives the mathematical
model to study and analyze their properties, while
in section 3 presents the control algorithm, sections
5 and 6 show the simulations and section 7 are the
conclusions of the article.

During the last decade have been taking efforts by the
scientific and technological community oriented sta-
bilization and trajectory tracking of rotary wing air-
craft.[Altug, Ostrowski and Taylor, 2005] propose a
control algorithm to stabilize the cuatrirotor using ar-
tificial vision and a camera as the main sensor. They
study two methods, used in the first control algorithm.
Their results were successfull tested in simulations.
In its paper [Heredia, Ollero, Bejar and Mahtani,
(2008)] they deal with the problem of controlling an
autonomous helicopter and do so by computer simula-
tions of control strategies based on fuzzy logic and non-
linear tracking control of two possible scenarios ver-
tical ascent and simultaneous longitudinal and lateral
movement. The controller consists of a MIMO (multi-
ple inputs multiple outputs) inner loop for stabilization
and four ties led to SISO in speed and position.
In its paper [Pounds, et al, 2006] conceived and devel-
oped a control algorithm for a four-rotor prototype they
use inertial measurement unit (IMU for his syllables in
English) for measuring the angular velocity and accel-
eration, using the linearization technique they conceive
a dynamic model control. The results were tested by
simulation.
[Vissiere and Petit, 2008] consider the problem of de-
veloping a modular system for real-time embedded
control applications in UAVs, their efforts lead them to-
ward programming and they propose the control strate-
gies. To test its reported results implementing an ex-



tended Kalman filter at 75Hz used for estimating the
states of a small helicopter.
They [Chowdhary and Lorenz, (2005)] conceive stabi-
lization of a VTOL UAV by considering the feedback
states into line as a simple linear control technique with
the only problem of the flight envelope. The problem
is often accentuated due to improper linear model, the
measurement noise in the sensors and external shocks.
They present a control architecture based on a valid
extension of the linear optimal control law for entire
feedback states. An extended Kalman filter is used in
the problem state and parameter estimation. Based on
the estimation of the parameters feedback state gain is
calculated by solving the Riccati equation for quadratic
optimization control online.
In his doctoral thesis [Arda, (2006)] addresses the prob-
lem of designing a embedded system for a vehicle
equipped with air cuatrirotor inertial sensors, the con-
trol system is developed in Matlab/Simulink and imple-
mented in real time using Simulink module Real Time
Windows Target. Then designs a linear quadratic reg-
ulator for stabilization of the attitude flight. The hard-
ware it integrates a data acquisition card, DC drives, a
set of sensors, DC motors and Draganflyer V Ti plat-
form. Now [Salazar-Cruz, Escareno, Lara and Lozano
(2007)] describes the design of an embedded control
system for an unmanned aerial vehicle (UAV) capabil-
ities cuatrirotor rate for stationary flights. The vehi-
cle dynamic model is presented using Euler-Lagrange
and propose a control strategy based on integer satu-
ration, embedded control system architecture describes
stationary autonomous flight. The main system com-
ponents are a microcontroller, an inertial measurement
unit (IMU), a global positioning system (GPS), and in-
frared sensors. Euler angles are calculated using a data
fusion algorithm. Experimental results show that the
control system works for indoor flying autonomous ve-
hicles.
[Adigbil, (2007)] presents the development of a reliable
remote control to assist in a mini air robot with four
rotors and capabilities to ensure a stable flight. As a
first phase dynamic model obtained by Euler-Lagrange
equations and test three different types of control laws
for feedback states, and sliding mode backstepping for
stabilization and all UAV position, the author mentions
that all of them were compared in simulations but not
describe the advantages of each.
[Mian and Wang, (2008)] proposed a nonlinear con-
troller for stabilizing a helicopter, the strategy is based
on the saturation of integrators. Due to the positive
achievements that have this type of strategy it was al-
lowed to take into account the coupling conditions. The
controller simulations showed good results in respect
of other drivers, and thanks to embedded sensors and
control is that it is capable of autonomous flight in real
time. Their results show that the control strategy is able
to perform tasks autonomously as take-off, landing and
hovering.
Finally [Ollero and Merino, (2004)] discusses meth-

ods and technologies that have been applied in aerial
robotics, several UAVs, summarizes the control tech-
niques including control architectures and control
methods.

2 Mathematical model
2.1 dynamic model
To obtain the dynamic model consider that the two ro-

tors producing a force normal to the horizontal plane
of the system. Because the system has two rotors that

Figure 1. System model

provide the thrust force, the total thrust is given by,
Tt =

∑2
1=1 Ti the forces caused by the action of the

motors T1 and T2 produce a torque about the center of
gravity. The total rotational torque given by the follow-
ing expression uθ = (T2−T1)l, where l is the distance
from the center of gravity of the system to the engine
axis.
Realizing the analysis of forces, applying Newton’s
second law and considered as state variables to the
energy accumulating elements which in this case is a
mass that rotates at a speed about its center of gravity,
the equation which models the dynamic behavior of the
system is the following differential equation

Jθ̈ +Bθ̇ = u (1)

where φ(u) is an unknown control function that de-
pends on time

Jθ̈ +Bθ̇ = φ(u) (2)

We spent to representation in first-order equations

θ̇1 = θ2 (3)

θ̇2 = −B
J
(θ2) +

1

J
φ(u) (4)



The model is represented in state variables, which are
defined for the following states x1 = θ1, x2 = θ2 and
we obtain the following matrix representation

ẋ = f(x, u) =

[
0 1
0 −BJ

]
x+

[
0
1
J

] [
u
]

(5)

The J value was obtained from an analysis of the model
made in SolidWorks and B is the damping of the sys-
tem modeled by the equation

B = −F | θ̇ | θ̇

We analyze the stability of the system by calculating
the characteristic polynomial of the open loop system
which is

λ2 + λ
B

J
(6)

Besides we obtain the system eigenvalues λ1 = 0 and
λ2 = −BJ .
So for any value of this system will have a zero eigen-
value and the other negative, we can only inferred in-
ternal stability, since the matrix A is not Hurwitz.

3 Control Algorithm Design
The control algorithm used to stabilize the bar sys-

tem is based on the method proposed by [Astolfi and
Ortega, (2003)], in the work we use asymptotic stabi-
lization for design adaptive control laws of non-linear
systems.
Consider a system of the form

ẋ = f(x, u)

and the basic problem it is to find a stabilizing control
law u = u(x) (ie when it is possible) so that the closed
loop system be either locally (globally) asymptotically
stable. The proposed procedure for solving this prob-
lem consists of two steps. First find a target dynamic
system ξ̇ = α(ξ) to be locally (globally) asymptoti-
cally stable dimension strictly less than x, a mapping
x = π(ξ), and a function c(x), such that

f(π(x), c(π(ξ))) =
∂π

∂ξ
(ξ)α(ξ)

that is any trajectory x(t) of the system ẋ = f(x, c(x))
is the image by mapping π(·) of a path in the target
system. Note that the mapping π : ξ → x is an immer-
sion, i.e. the range of π is equal to the dimension of
ξ. Second, implement a control law that contributes to
the attract variety x = π(ξ) and maintains closed loop

trajectories bounded. Thus it follows that the closed-
loop system asymptotically behave as desired objective
system and stability is ensured.
We resume the equations 3 and 4 and we rewritte

θ̇1 = θ2 (7)

θ̇2 = ξ(t) +
1

J
φ(u) (8)

where ξ(t) is an unknown function that depends on
time, and we get the following system

θ̇1 = θ2 (9)

θ̇2 = ξ(t) +
1

J
u (10)

Consider the following full-order target system, a new
controller is designed for this system, where u = u(t)
is any stabilizing control law for the system by feed-
back

z1 = θ2 − θ̂2 + β1(θ1) (11)
z2 = ξ(t)− ρ1 + β2(θ1) (12)
z3 = ξ̇(t)− ρ2 + β3(θ1) (13)

to obtain the state variables of interest for immersion
in the higher-order system, you must find a function
ψ(x, z) that preserves the trajectories bounded and
asymptotically stable zero dynamics

θ2 = z1 + θ̂2 − β1(θ1) (14)
ξ(t) = z2 + ρ1 − β2(θ1) (15)
ξ̇(t) = z3 + ρ2 − β3(θ1) (16)

Suppose ξ̈ ≈ 0, and apply the following control input

u = J [(ρ1 − β2) + kpθ1 + kdθ2]

and replaced the equations 9 and 10 obtained for the
following system

θ̇1 = θ2 (17)
θ̇2 = −ξ + ρ1 − β2 + kpθ1 + kdθ2 (18)

Consider that equation 12 is rewritten as follows

θ̇1 = θ2 (19)
θ̇2 = −z2 + kpθ1 + kdθ2 (20)

and is derived from the target system for the function



that us to preserve the condition of stability

ż1 = ξ +
1

J
u− ˙̂

θ2 +
∂β1
∂θ1

θ2 (21)

ż2 = ξ̇ − ρ̇1 +
∂β2
∂θ 1

θ2 (22)

ż3 = −ρ̇2 +
∂β3
∂θ1

θ2 (23)

substitution is ξ, ξ̇ and θ2 in the above equations yield
the following system

ż1 = z2 + ρ1 − β2 +
1

J
u− ˙̂

θ2

+
∂β1
∂θ1

(z1 + θ̂2 − β1) (24)

ż2 = z3 + ρ2 − β3 − ρ̇1

+
∂β2
∂θ1

(z1 + θ̂2 − β1) (25)

ż3 = −ρ̇2 +
∂β3
∂θ1

(z1 + θ̂2 − β1) (26)

are cleared again the variables of interest, leaving the
following system

˙̂
θ2 = ρ1 − β2 +

1

J
u+

∂β1
∂θ1

(θ̂2 − β1) (27)

ρ̇1 = ρ2 − β3 +
∂β2
∂θ1

(θ̂2 − β1) (28)

ρ̇2 =
∂β3
∂θ1

(θ̂2 − β1) (29)

This system complies with the condition of the ψ(θ, z)
preserve bounded the trajectories and stabilize at zero
asymptotically. Now solve the problem of finding a
function and a control u such that describe the invari-
ant manifold . This requires the solution of a partial
differential equation, this will start building consider-
ing the following system of equations, taken 21, 22 and
23 and replacing them z1, z2 and z3, the system is

ż1 =
∂β1
∂θ1

z1 + z2 (30)

ż2 =
∂β2
∂θ1

z1 + z3 (31)

ż3 =
∂β3
∂θ1

z1 (32)

derives 30 and replaced 31

z̈1 =
∂β1
∂θ1

ż1 + ż2 =
∂β1
∂θ1

ż1 +
∂β2
∂θ1

z1 + z3 (33)

derives 33 and replaced 32 and obtain

...
z1 =

∂β1
∂θ1

z̈1+
∂β2
∂θ1

ż1+ż3 =
∂β1
∂θ1

z̈1+
∂β2
∂θ1

ż1+
∂β3
∂θ1

z1

(34)

equals zero ref eq: obs25 and finally obtains a polyno-
mial with terms that are partial differential equations

z
(3)
1 + β1z̈1 + β2ż1 + β3z1 = 0 (35)

The final result is the system and the controller, where
the variables of the controller are obtained from the
equations 27, 28 and 29. The asymptotically stable sys-
tem is described by the following equations

θ̇1 = θ2 (36)

θ̇2 = −F
J

+
1

J
u (37)

u = J [(ρ1 − β2) + kpθ1 + kd(θ̂2 − β1)] (38)

4 Results
4.1 Tuning to the controller gains and of the ob-

server
In this section we validate the control algorithm

through numerical simulation, the above results were
done in Matlab and Simulink.
We make a first set of simulations in order to observe
the behavior of both the observer gains and PD the con-
troller gains. Figure 2 makes a first visualization of the
behavior with different gains for the controller while
the observer remains constant at 1.0, it is clear that the
optimal gain is over 100 and under 1000. Therefore
values are plotted in that interval, the figure 3 show the
behavior to different values, it is easy to conclude that
higher values show the negative overshoot the system
is smaller, but the figure 2 shows that if the system is
large does not stabilize at zero. Therefore be used for
controller gain of 400.
As shown in figure 4 the constant controller gains are
1.0 and were varied observer gains. It is easy to see that
the optimal gain is 1.35.

4.2 First simulation of the closed loop system
A first simulation of controller parameters and ob-

server are showed in table 1

Polos del controlador Polos del observador

1.0 1.0

1.0 1.0

1.0

Table 1. System parameters for the first simulation

The figures 5 and 6 shows the position and the rota-
tional speed of the closed-loop system. It is noticeable
that both stabilize after a series of oscillations. Look-
ing at figure 7, we can notice that the variable θ̂2 is



estimated and shows a similar behavior to the variable
θ2, the figure 8 shows a comparison between the two
variables, we observe that the observer estimates the
variable θ2 in 4.5 seconds. The figure 9 shows the es-
timation error of the observer and the figure 10 shows
the control signal which stabilizes the system at zero
degrees.

4.3 Second simulation of the closed loop system
This section gives a second simulation taking into

account the poles obtained from the tuning gains. The
parameters used for this simulation are from table 2

Polos del controlador Polos del observador

400.0 1.35

400.0 1.35

400.0

Table 2. System parameters for the second simulation

The figures 11 and 12 shows the position and the
rotational speed of the closed-loop system, it can be
noted that the stabilization is immediate. If we look
at figure 13, we note that the variable estimated θ̂2,
shows a behavior equal to the variable θ2, figure 14
shows a comparison between the two variables, we
observe that the observer estimates the variable θ2
immediately. Figure 15 shows the estimation error of
the observer and figure 16 shows the control signal
which stabilizes the system at zero degrees. We can
conclude that to properly tune the observer it shows
excellent performance, as it stabilizes the system
immediately, should also be noted that the dynamic
quickest driver is having a significant impact on the
performance of the control loop and the dynamics the
observer must be just a little faster because otherwise
the system becomes unstable, this due to saturation in
the control loop.

The results of the simulation in virtual reality environ-
ment of the system are described satisfactory stabiliza-
tion trajectories shown in graphs 5 and 11 unlike shown
in a model 3D system. The figure 17 shows a stage of
stabilization of the system and figure 18 show the sta-
bilized system.

5 Conclusions
In this paper develops a control algorithm for a sys-

tem consisting of a rod actuated by two rotors, the pro-
posed algorithm is based on the theory proposed by As-
tolfi and Ortega [Astolfi and Ortega, (2003)].This con-
troller showed an excellent performance in the simula-
tions when the gains were appropriate. In the simula-
tions presented shows that the controller gain is the one

with greater presence in the system dynamics, however,
a good choice of observer gains ensures a dynamic fast
enough for the correct estimation of the state θ2, but
caution is needed because a too rapid dynamics sat-
urates the loop and leads to instabilities. The initial
conditions are not important result in the stabilization
of the system when stored below 45 degrees above the
horizontal.
Graphs 9 and 15 show the estimation error, which can
be verified as tends to be zero, again proper tuning
makes gains error dynamics faster. The virtual real-
ity model ahead helped visualize the behavior of the
physical system. This facilitates the interpretation of
the control algorithm and performance.
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Appendix A Graphics

Figure 2. Observer gains

Figure 3. Controller gains in the 100 to 400 interval

Figure 4. Observer gains in the 1.0 to 1.5 interval

Figure 5. Closed loop system angular position θ1

Figure 6. Closed loop system angular velocity θ2



Figure 7. Closed loop system estimed angular velocity θ̂2

Figure 8. θ2 and θ̂2

Figure 9. Closed loop system error

Figure 10. Closed loop system control signal

Figure 11. Closed loop system angular position θ1

Figure 12. Closed loop system angular speed θ2

Figure 13. Closed loop system estimed angular velocity θ̂2

Figure 14. θ2 and θ̂2



Figure 15. Closed loop system error

Figure 16. Closed loop system signal control

Figure 17. System stabilization

Figure 18. Stable system


